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FOREWORD 
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ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue 

University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., 

Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don 
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Director, Office of Bridges and Structures 
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information contained in this document.  This report does not constitute a standard, specification, 

or regulation. 
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1.0 INTRODUCTION 

 

The behavior of steel structures is an intricate and fascinating topic. This module is intended to 

serve as a guide to the AASHTO (2014) Load and Resistance Factor Design (LRFD) Bridge 

Design Specifications, 7
th

 Edition, and their representation of the behavior of steel bridge 

systems and members. The module focuses on the structural form and function of bridge systems 

and members, with emphasis on strength limit states. Where relevant, recent advances in the 

AISC (2010) Specification for Structural Steel Buildings as well as findings from research 

developments are discussed in addition to the AASHTO provisions.  

 

Selection of the most cost effective bridge structural systems and members is of course 

dependent on many factors, far beyond the fundamental behavior, which affect the overall 

material, fabrication, shipping, construction and maintenance costs for a given bridge. The 

companion Steel Bridge Design Handbook modules address these considerations. Also, steel 

bridge behavior is tied inextricably to the physical loadings or actions that the structure must 

resist, the corresponding load models implemented by the AASHTO Specifications to represent 

these actions, and the analysis of the structural systems to predict the overall responses and the 

individual component requirements. The Steel Bridge Design Handbook modules titled Loads 

and Load Combinations addresses the AASHTO (2014) load models and the module titled 

Sytructural Analysis discusses methods of analysis. Service and fatigue limit states, redundancy 

and fracture control, and constructability are addressed in separate modules. In addition, the 

design of cross-frames and diaphragms and their connections, girder splices, bearings, decks and 

substructure units are addressed separately.  

 

Many of the words of J.A.L. Wadell (1916), a famous engineer and teacher of the early 20
th

 

century, are still very relevant to the design of bridge structures today. Principle V in Wadell’s 

Chapter XV on “First Principles of Designing,” which he refers to as “the most important 

(chapter) in the book,” reads: 

 

“There are No Bridge Specifications Yet Written, and there Probably Never Will be Any, 

which will Enable an Engineer to Make a Complete Design for an Important Bridge 

without Using His Judgment to Settle Many Points which the Specifications Do Not 

thoroughly Cover… the science of bridge-designing is such a profound and intricate one 

that it is absolutely impossible in any specification to cover the entire field and to make 

rules governing the scientific proportioning of all parts of all structures. 

 

The author, however, has done his best in Chapter LXXVIII of this treatise to render the 

last statement incorrect.”  

 

Certainly, the AASHTO LRFD Bridge Design Specifications (2014) have also done their best in 

this regard. Nevertheless, there are numerous areas where a broad understanding of the 

fundamental behavior of structures is key to the proper interpretation, application, and where 

necessary, extension of the AASHTO provisions. This module aims to aid the Engineer in 

reviewing and understanding the essential principles of steel system and member strength 

behavior and design. 
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2.0 BEHAVIOR AND STRUCTURE TYPES 

 

There are many ways to classify steel highway bridges. Classification of bridge systems in terms 

of maximum achievable span lengths is possibly the most relevant pertaining to fundamentals of 

the structural behavior. Steel highway bridges range from minor structures spanning only a few 

feet over creeks or streams to major technical achievements with spans larger than 4000 feet that 

define the geographic regions in which they are located. For bridges with spans ranging up to 

about 400 feet, stringer systems are very common. These types of structures are very important 

since they constitute the majority of the highway bridges within the nation’s transportation 

system. These types of bridges are discussed first, followed by other systems that are viable at 

longer span lengths.  (Note that here and throughout this module, the section number of the 

module is not included in the citation of any equations, when the citation is located in the same 

section as the reference.) 

 

2.1 Rolled I-Section Stringer Systems 

 

Steel bridge spans smaller than about 100 feet are often achieved most economically using rolled 

I-section members. For the shortest spans, the efficiency of the structural system tends to play a 

minor role in the overall cost and competitiveness relative to other attributes pertaining to 

simplicity, standardization, and speed of design, fabrication, delivery and construction. AISI 

(2000) has developed short-span bridge plans and software that address these considerations. For 

the shortest spans, the primary structural members in these types of bridges are typically simple-

span rolled I-beams. Both composite and noncomposite deck systems are common in these types 

of bridges.  

 

Spans longer than 100 feet start to push the technical limits of rolled I-beam stringer systems. 

Flexibility of the structure, vibration and motion perception tend to become more significant 

considerations in simple-span I-beam systems as the ratio of the span length, L,  to the total 

structural section depth, Dtotal, exceeds roughly L/Dtotal = 25. These limits may be extended by 

establishing continuity between structural elements (i.e., making the I-beams composite with a 

concrete deck), use of continuous spans or simple-spans for dead load that are subsequently 

made continuous for live load (Talbot 2005), making the I-beams integral with the substructure 

at piers (Wasserman 1997), or use of rigid-frame bridges in which major structural elements of 

the superstructure and a portion of the substructure are steel I-sections (Heins and Firmage 

1979). In addition, other modifications to the structural system are possible such as the use of 

cover plates within negative moment regions and/or longitudinal post-tensioning (Troitsky 1990, 

Xanthakos 1994). However, these modifications have only a minor influence on the structure 

stiffness and dynamic characteristics, and their cost may often outweigh their benefits. 

Generally, one can achieve the largest overall stiffness for a minimum constant depth by using 

composite continuous spans with integral piers, and by applying AASHTO (2014) Appendix B6 

to allow for minor inelastic redistribution of the interior pier moments. Nevertheless, L/Dtotal 

values larger than about 35 are exceedingly difficult to achieve in stringer-type systems by any 

of the above measures. Also, as discussed in Stringer Bridge module, where the depths are not 

limited due to clearance restrictions, etc., often the greatest economy can be achieved by using 

sections that are deeper than suggested by the above maximum L/Dtotal limits.  

 



 3 

2.2 General I-Section Stringer Systems 

 

2.2.1 Overview 

 

Welded plate I-girders become an attractive option at span lengths within the upper range 

applicable for rolled I-beams. Furthermore, depending on the costs of welded I-section 

fabrication versus the production costs of rolled I-shapes, welded I-section members can be cost-

effective at smaller span lengths. Figure 1 shows a typical composite rolled I-beam or welded I-

girder bridge cross-section. In this system, the I-sections are spaced such that the deck spans 

between them. The I-section members are referred to generally as girders in the following 

discussions.  

 

 
 

Figure 1  Typical composite rolled I-beam or welded I-girder bridge cross-section. 

 

Cast-in-place composite concrete slabs may be designed in straight bridges of these types, 

without skew or with small skew, using the AASHTO (2014) Article 9.7.2 Empirical Design 

rules. AASHTO (2014) does not explicitly restrict the use of empirical design to straight bridges 

with small skew; however, it does require additional reinforcing in the end zones if the skew 

exceeds 25 degrees. Additional considerations may be prudent in some cases with horizontally 

curved bridges. The slab empirical design rules account for beneficial arching action in 

transferring loads to the girders, and are allowed for cast-in-place slabs up to approximately 13.5 

feet spacing between the girders, S, or a maximum ratio of the girder spacing to the slab 

thickness of S/ts = 18, among other requirements.  

 

Precast decks and a number of other deck systems also are capable of spanning a large S with 

relatively small ts. Wider girder spacing potentially eliminates one or more extra girder lines and 

the corresponding cross-frames and bearings, and also tends to give a more efficient structural 

system. This is because the live loads are positioned to produce the maximum response in each 

girder, but they do not generally produce the maximum effects in all the girders at a given bridge 

cross-section simultaneously. With wider girder spacing, the sum of the girder resistances in a 

given bridge cross-section will tend to be closer to the total required live load capacity for the 

various positions of the live load. Trade-offs associated with wider girder spacing include 

increases in deck thickness, and reinforcing and forming costs (which are typically offset by 

reduced labor costs). Also, future staged redecking considerations may influence how many 

girders may be removed from the cross-section. Cross-frame forces tend to be larger with wider 

girder spacing, due to larger differential live loads and live load deflections of the girders, as well 

as larger stiffness of the cross-frames relative to the slab. Interestingly, the design efficiency 

associated with wider spacing in ordinary stringer bridges is no longer impacted by the 

approximation of slab shear lag effects by effective width rules. This consideration is discussed 

below. 
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Figure 2  Effect of Shear lag. 

 

Prior AASHTO Specification provisions, such as AASHTO (2004) Article 4.6.2.6.1, restricted 

the effective width of the slab, beff, to a maximum of 12ts + bf/2 or ¼ of the effective span length 

for interior girders, along with a comparable limit for exterior girders, to account for the effect of 

shear lag in the slab (illustrated in Figure 2). Basically, slab flexural stresses arising from major-

axis bending of the girders are developed by shear stresses in the plane of the slab. This can be 

seen by making a longitudinal cut to isolate a portion of the slab from the rest of a given girder 

and drawing a free-body diagram. Shear deformations associated with these shear stresses tend to 

reduce the magnitude of the flexural stresses at the slab locations farther from the girder webs. 

The prior slab effective width rules limited the slab contribution to the composite section in some 

situations with wider girder spacing. 

 

The 2008 interims of Article 4.6.2.6.1, which have been retained in subsequent editions of the 

AASHTO LRFD Bridge Design Specifcaions, replaced the above traditional rules simply with 

the use of the full tributary width perpendicular to the axis of the member. The new provisions 

are applicable to all concrete deck slabs in composite or monolithic construction, except that 

separate slab effective width requirements are retained for segmental concrete box and single-

cell cast-in-place box beams, orthotropic steel decks, and for transverse floor beams and integral 

bent caps. In negative moment regions, the new simplified rule is based on the use of the 

idealized fully-cracked section for cross-section level resistance calculations under both service 

and strength loading conditions. However, for the structural analysis, AASHTO (2014) Article 

6.10.1.5 states that the concrete deck is to be assumed fully effective (uncracked) over the entire 

bridge length for structural analysis, using specified concrete modular ratios for short- and long-

term loadings applied to the composite bridge. These changes in Article 4.6.2.6.1 are based on 

extensive studies by Chen et al. (2005) and others. Chen’s studies indicate that the use of a slab 

effective width be equal to the full tributary width has a negligible influence on the design 

calculations relative to the physical bridge response in the above permitted situations. The 

research by Chen et al. (2005) demonstrated that there is no significant relationship between the 

slab effective width and the slab thickness within the practical ranges of the deck proportions in 

ordinary stringer bridge systems, as implied by previous Specifications.  

 

Similar to rolled I-beam bridges, the structural efficiency of welded I-girder bridges can be 

improved substantially by establishing continuity between the various components or sub-

systems. Also, welded I-girder cross-section proportions are typically changed at field splice 

locations or at the limits of available plate lengths. The use of cross-section transitions at other 
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locations may or may not be cost effective depending on the specifics of the bridge and the 

economics of welding and inspecting a splice compared to the cost of extending a thicker plate. 

The Steel Bridge Design Handbook module titled Stringer Bridges discusses these considerations 

in detail. Variable web depth members with haunches over the interior supports may be used in 

continuous spans, thus following the shape of the elastic moment envelopes more closely. Hall 

(1992) indicates that haunched composite girders are usually advantageous for spans in excess of 

250 feet, when the depth is limited in a portion of the span, or when a decrease in the positive 

moments reduces critical fatigue stresses. Current rules of thumb place this limit at 350 to 400 

feet (Pfeifer 2006). Up to these span lengths, AASHTO (2014) Appendix B6 can be used to 

design the lightest straight I-girder bridges with limited skews using prismatic sections between 

the field splice locations. 

 

 
 

Figure 3  Typical composite I-girder substringer system. 

 

 
 

Figure 4  Two-girder system with floor beams and stringers. 

 

 
 

Figure 5  Two-girder system with cross-girders. 

 

At spans exceeding about 250 feet, the I-girders in a bridge cross-section such as the one shown 

in Figure 1 need to be spaced relatively close together compared to their depths for the deck to 

span efficiently between the girders while keeping its thickness low to minimize the dead weight. 

In these cases, it may be attractive to use a girder-substringer system such as in Figure 3. In this 

type of system, shallower rolled I-section substringers are framed over the top of the cross-
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frames to support the deck. Both the main girders and the substringers may be designed 

compositely. In addition, it is advantageous for the substringers to be continuous over two or 

more of their supports.  

 

For larger spans, the Engineer may consider using multiple substringers between each of the 

main girders. This eventually leads to the consideration of two-girder systems with floor beams 

and stringers, as shown in Figure 4. A two-girder system with cross-girders (Figure 5) is another 

option (Brown 1992). In this system, the bridge deck spans longitudinally between the cross-

girders. As such, the deck must be designed for the combined loading due to the local bending 

between the cross-girders plus the stresses due to overall composite action with the primary 

girders. Conversely, for the systems shown in Figure 1 through Figure 4, the local bending of the 

deck is predominantly in the transverse direction; hence, it may be considered separately from 

the composite action with the main girders. Furthermore, in the system shown in Figure 5, the 

shear connectors near the intersection of the main- and cross-girders are subjected to significant 

combined longitudinal and transverse loads. Because of the above complexities, the system in 

Figure 5 requires greater design effort. However, it may be a viable option in some longer-span 

applications such as cable-stayed bridges. For these types of structures, design of the deck to 

span in two-way action between the main girders and the cross-girders also may be an option 

worth considering. Another significant factor in designs such as those shown in Figure 4 and 

Figure 5 is that two-girder systems are often identified as being nonredundant, and thus fracture 

critical. Nevertheless, fractures have occurred in the primary members of a number of two-girder 

bridges in the past without precipitating the collapse of the structure (Fisher et al. 1988, Fisher et 

al. 1977). Redundancy considerations and fracture control are discussed in detail in the Steel 

Bridge Design Handbook module titled Redundancy. 

 

I-girder bridges typically become less practical at spans above about 400 feet. Economical main 

I-girders at these span lengths tend to have relatively narrow flanges compared to their web 

depths. As such, the girders are less efficient with respect to lateral-torsional buckling. Also, the 

flange thicknesses start to become inordinately large, particularly for the bottom flanges in 

composite I-girders, and the contribution of a composite slab becomes a smaller fraction of the 

overall stiffness and resistance of the primary members. In addition, field splices must be located 

in high moment regions rather than at points of contraflexure in these longer spans. Nevertheless, 

the use of High Performance Steel (HPS) has allowed maximum economical span lengths to 

increase over past rules of thumb.  

 

For spans somewhat beyond those of the shortest rolled I-beam systems and typically somewhat 

less than the largest practical spans for welded I-girders, significant site and highway geometry 

restrictions often lead to demands for complex bridge geometries. These include horizontally 

curved alignments, bifurcated structures, splayed girder arrangements, stacked roadways, 

unequal spans and/or significant support skew. Figure 6 shows one example of a complex 

framing plan for a highway exit ramp.  
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Figure 6  Example complex plan geometry (courtesy of HDR Engineering, Inc.) 

 

2.2.2 Fundamental Behavior of I-Section Stringer Systems 

 

An obvious behavioral characteristic of I-section members, but one that is essential to note, is 

their efficiency in major-axis bending. For welded I-girders, a single relatively thin web provides 

for efficient transfer of shear forces while the flanges, located at the top and bottom of the cross-

section, provide an efficient transfer of bending moments for a given cross-section depth. 

Straight composite I-girder bridges without skew behave largely as a set of parallel singly-

symmetric I-girders with a large top flange when the bridge is subjected predominantly to overall 

major-axis bending. However, individual I-section members are relatively inefficient in weak-

axis bending and in torsion. As such, they need to be braced laterally by diaphragms or cross-

frames, or alternatively in the final constructed configuration, the top flange needs to be 

embedded in or compositely connected to the slab in positive bending regions, to achieve 

adequate strength with respect to lateral-torsional buckling.  

 

In horizontally curved and/or skewed bridges, the structure is commonly subjected to significant 

torsion. Figure 7 shows the resultant of the total dead load, W, and the resultant of the 

corresponding total vertical end reactions, R, for a simply-supported horizontally curved bridge 

with radial supports. If the resultant reactions R are assumed to act at the middle of the bridge 

cross-section at the end supports, one can observe that additional end torques, T, are necessary 

for equilibrium. These torques increase the vertical reactions on the outside girders (the ones 

farther away from the center of curvature) and decrease the vertical reactions on the inside 

girders.  

 

WR R

T T

 
 

Figure 7  Plan view illustrating the required resultants for the reactions due to dead load at 

the ends of a simply-supported horizontally-curved bridge with radial supports. 

 

The internal torsional resistance of horizontally curved I-girder bridges is developed 

predominantly via the transfer of vertical shear forces between the girders by the cross-frames 

and the slab as shown in Figure 8. These vertical shears, referred to traditionally as V-loads 

(NSBA 1996), increase the downward forces on the outside I-girders and offset the applied 

vertical loads on the inside I-girders. This increases the major-axis bending moments and end 

. 
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reactions on the outside girders and decreases them on the inside girders. The overall internal 

torque on the structure at any bridge cross-section is developed predominantly by the differences 

in the girder shears across the width of the structure. The couples generated by the V-loads on 

each of the individual girder free-body diagrams of Figure 8 also resist the tendency of the I-

girders to twist about their individual axes relative to the overall torsional rotation of the bridge 

cross-section. 

 

V1 V2 V3

V1

V1 V3V2

V2 - V3 V3
V2 - V1

V-loads: V1, V2 & V3

Sum of extra shear 

forces in each girder 

due to V-loads  
Center of curvature  

 

Figure 8  Transfer of vertical shear forces due to torsion (V-loads) by the cross-frames and 

the slab in a curved bridge 

 

In continuous-span curved I-girder bridges, the portion of the major-axis bending moments in the 

outside girders due to the downward V-loads can be negative in shorter adjacent spans, due to 

the transfer of the associated hogging moments at the interior supports into the adjacent spans. 

Conversely, upward V-loads on the inside girders can induce additional positive moments in the 

inside girders of shorter adjacent spans due to the rotational continuity across the interior 

supports.  

 

Since individual I-girders are relatively flexible and weak in torsion, curved I-girders must be 

supported by cross-frames or diaphragms at relatively close intervals along their lengths to avoid 

having large torsional stresses and rotations between these brace points. Therefore, the cross-

frames are essential (primary) components in horizontally curved I-girder bridges. They are 

essential not only to transfer a large share of the V-loads between the I-girders but also they 

provide torsional support to the individual I-girders. 

 

For cross-frame spacings necessary to ensure adequate stiffness and bending resistance in 

completed I-girder bridges, the girder torsional responses are dominated generally by 

nonuniform or warping torsion. Warping torsion is tied to the lateral bending of the I-section 

flanges in opposite directions due to the twisting of the member. Figure 9 illustrates the idealized 

case of a cantilever I-beam subjected to end torque. The warping torque is developed by the 

shear forces associated with the flange lateral bending moments developed at the fixed end, 

where warping is restrained.  These forces are labeled as H in the figure. Figure 10 shows a 

simplified model for calculation of the flange lateral bending stresses on a curved I-girder 

subjected to uniform major-axis bending moment. Twisting of the member is assumed restrained 

at the cross-frame locations in this analysis; the focus is on the localized twisting of the member 

between the cross-frame locations. The horizontal curvature induces a radial loading effect on 

each of the flanges as shown in the figure. This radial loading effect in turn gives a maximum 

first-order elastic lateral bending stress of approximately  
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 (2.2.2-1)    

 

in the flanges (White et al. 2001) where Lb is the unsupported length between the cross-frames, bf 

is the width of the flange under consideration, R is the horizontal radius of curvature of the I-

girder, Lb/R is the subtended angle between the cross-frame locations, and fb is the flange stress 

due to major-axis bending. In traditional practice, the coefficient 0.5 often is increased to 0.6 in 

Eq. (1) to compensate for the simplifying assumptions utilized in the derivation. AASHTO 

(2014) Article C4.6.1.2.4b gives the expression for M corresponding to Eq. (1).  

 

T

M



Top View End View

M

T

M

M



H

H

H

H

 
 

Figure 9  Illustration of twisting and warping deformation of an I-section member. 

 

If one considers a spacing of the cross-frames such that the subtended angle between them is 

equal to the maximum value of Lb/R = 0.1 permitted by AASHTO (2014) Article 6.7.4.2 for 

curved I-girder bridges in the final constructed condition, then one can see that Lb/bf must be 

limited to 6.0 in order to restrict f to 0.3fb. At Lb/R = 0.05, the corresponding value of Lb/bf   

increases to 12. The value f = 0.3fb is suggested as a target for preliminary design in the 

Commentary to this article.  
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Figure 10  Simplified calculation of flange lateral bending stresses on a curved I-girder 

subjected to uniform bending moment. 

 

Torsional loading on fascia girders, due to eccentric concrete deck overhang loads acting on 

cantilever forming brackets, can be important to consider during construction in straight as well 

as curved bridges. Also, the use of discontinuous cross-frames in straight or curved bridges with 

significant support skew, while alleviating excessive cross-frame forces in certain situations, can 

lead to significant torsional loading and flange lateral bending on the I-girders. Furthermore, 

significant flange lateral bending can be induced due to wind loads acting laterally on the bridge, 

particularly prior to placement of the slab. In this latter case, it is sometimes beneficial to provide 

lateral bracing in one or a few unbraced lengths adjacent to the piers and abutments, as shown in 

Figure 11, to reduce the span of the I-girders in weak-axis lateral bending. AASHTO (2014) 

Article C6.7.5.2 recommends this practice, and suggests that this type of bracing should be 

considered in general to help prevent relative horizontal movement of the girders in spans larger 

than 200 feet. Heins et al. (1982) have shown that there is rarely a need for bottom flange wind 

bracing on I-girder bridges in the final constructed condition when full-depth cross-frames are 

used. Shorter span bridges can be designed efficiently and economically without the use of 

flange lateral bracing. 
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Figure 11  Use of lateral bracing within a few unbraced lengths adjacent to supports to 

reduce I-girder lateral bending stresses due to wind. 

 

Article C6.7.5.2 recommends that when flange lateral bracing is employed, it should be placed 

near the top flange of the I-girders. Otherwise, the bracing acts with the deck in the final 

constructed configuration to form a pseudo box section, and thus it must be designed in general 

for significant live-load effects. The structural response of the completed bridge system is more 

efficient when the bracing is placed near the bottom flange, but the lateral bracing and its 

connections to the I-girders must be designed appropriately for the resulting forces.  

 

Skewed cross-frames or diaphragms deform negligibly in their own plane when the girders 

experience major-axis bending rotations. Rather, at the bearing lines, these components tend to 

rotate about their own skewed axis and/or warp out of their plane due to the girder rotations, as 

illustrated by the sketch in Figure 12. This forces a coupled torsional rotation of the girders 

(Beckman and Medlock 2005; Coletti and Yadlosky 2005). When subjected to major-axis 

bending rotations at the bearing lines, the girders have to twist to maintain compatibility with the 

bearing-line cross frames or diaphragms. Furthermore, right (non-skewed) intermediate cross-

frames in skewed bridges connect to the girders at different points along their spans. As a result, 

these intermediate cross-frames are subject to differential displacements as shown in Figure 13 

(Coletti and Yadlosky 2005). Due to the large in-plane stiffness of the cross-frames relative to 

the resistance of the girders to vertical displacement at the cross-frame connections, the 

intermediate cross-frames (i.e., the cross-frames within the span) tend to rotate about an axis 

parallel to the longitudinal axis of the girders. These cross-frame rotations cause the girders and 

the overall bridge cross-section to twist.  

 

 

 

 

 

 

 

 

 

 



 12 

Cross-frame or diaphragm

Girder top flange longitudinal deflection 

due to major-axis bending rotation

Girder bottom flange longitudinal 

deflection due to major-axis 

bending rotation

Girder

Deflection at top of cross-frame due to 

girder major-axis bending rotation

Deflection at bottom of cross-frame due 

to girder major-axis bending rotation

Girder bottom flange lateral deflection 

due to compatibility with diaphragm

Girder top flange lateral deflection due 

to compatibility with diaphragm

Girder major-axis bending rotation

Coupled girder twist

 
 

Figure 12  Plan view of deflections at the bottom and top of skewed diaphragms or cross-

frames at a bearing line, forcing a coupling between major-axis bending and torsional 

rotation of the girders. 

 

When one end of a cross-frame line is close to the vertical supports while the other end frames 

into the girders at a significantly larger distance into the span (see Figure 14a), relatively large 

forces are attracted to the cross-frame members. When the skew angle is larger than 20
o
, in 

which case AASHTO (2014) requires that the intermediate cross-frames must be perpendicular 

to the girders, the cross-frame member forces may be reduced, at the expense of larger flange 

lateral bending in the I-girders, by removing the cross-frames that frame into the girders closest 

to the supports or by using staggered cross-frames as illustrated in Figure 14b. Another way of 

reducing the cross-frame member forces near the supports, as well as to eliminate a large number 

of cross-frames, is to use lean-on bracing concepts. The use of lean-on bracing is discussed 

subsequently in Section 4.2 of this module. 
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1

2

Girder 1

Girder 2
 

 

Figure 13  Cross-frame, bridge cross-section, and girder torsional rotations due to 

differential girder displacements in skewed bridges (Coletti and Yadlosky 2005). 

 

(a) Continuous cross-frame lines across the bridge 

Skew angle  > 20
o

(b) Staggered cross-frames  
 

Figure 14  Use of staggered cross-frames to reduce the forces attracted to the cross-frame 

members near the supports in skewed I-girder bridges. 
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2.2.3 Integral Piers and Abutments 

 

The use of integral piers allows the Engineer to remove skewed interior support conditions by 

moving the pier cap up into the superstructure and using a single column pier as shown in Figure 

15 or a straddle bent as shown in Figure 16. Continuity of the cap with the pier as shown in 

Figure 15 maximizes the pier column efficiency by approximately halving the longitudinal 

moments compared to conventional cantilever columns. Furthermore, integral pier caps help 

satisfy vertical clearance requirements and improve the design aesthetics. Abu-Hawash et al. 

(2005) suggest that redundancy requirements at integral steel pier caps can be satisfied by using 

twin HPS I-girders.  

 

In addition, jointless bridge decks and integral abutments are used commonly in many U.S. states 

for steel stringer-type bridges having maximum total lengths from 250 up to 400 feet 

(Wasserman 1987; Wasserman and Walker 1996). In these bridges, the girders are encased in the 

abutments at the ends of the structure, thus eliminating joints that potentially leak and damage 

the girder ends, and are costly to maintain. Thermal movements are accommodated within the 

foundation, and are assumed unrestrained in the design of the superstructure. Figure 17 shows a 

typical integral abutment detail for a steel I-girder bridge. Various devices are utilized by 

different organizations to accommodate the thermal movements without causing damage to the 

substructure or superstructure. These include: (a) limiting the bridge length, skew and/or 

horizontal curvature, (b) use of select backfill materials and/or uncompacted backfill, (c) 

spanning the area disturbed by the foundation movements immediately behind the abutments 

with the approach slab, thus avoiding settlement of the slab and the associated surcharge loads, 

(d) limiting the foundations to a single row of vertical piles, (e) specifying the pile type and 

requiring a minimum pile length, (f) orienting vertical H-piles such that they are subjected to 

weak-axis bending due to the longitudinal movements, (g) providing a hinge detail within the 

abutment to limit the moment developed at the tops of the piles, (h) anchoring the approach slab 

to the superstructure with a detail that allows rotation of the approach slab at the abutment, to 

accommodate settlement of the approach fill and (i) provision of an expansion joint at the 

roadway end of the approach pavement (FHWA 1980; Wasserman 1987; Wasserman and 

Walker 1996; Weakley 2005; Yannotti et al. 2005). 
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Figure 15  Typical post-tensioned concrete integral bent cap with a single column pier 

(Wasserman 1997) (courtesy of Tennessee DOT and NSBA). 

 

 

 

Figure 16  Straddle bents with integral steel pier caps (Abu-Hawash et al. 2005) (courtesy 

of Iowa DOT, HDR Engineering, and NSBA). 
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In cases involving longer bridges, larger skew angles, abutments resting on rock, massive 

cantilever abutments, etc., where the foundation is less likely to accommodate the required 

movements, semi-integral abutments are a second option to eliminate deck joints. In this case, 

the girders typically are integral with the backwall, but the required movements are 

accommodated by separating the backwall from the abutment stem, as shown in Figure 18. In 

semi-integral abutments, the girders are seated on expansion bearings.  

 

2.2.4 Temperature Movements 

 

In bridges where expansion joints are required, orientation of the bearings toward a fixed point 

allows the bridge to expand freely in both the longitudinal and transverse directions. In curved 

bridges, this is accomplished by orienting the bearings to permit expansion along a chord that 

runs from the fixed point to the bearing element under consideration, as shown in Figure 19 

(NSBA 2004). This bearing arrangement does not eliminate thermal stresses due to a temperature 

differential through the depth of the superstructure. AASHTO (2014) Article 3.12.3 provides 

requirements for consideration of these thermal effects, but the commentary to this section 

indicates that these effects may be neglected at the discretion of the bridge owner for cases such 

as multi-beam bridges, where experience has indicated successful performance without their 

consideration.  
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Figure 17  Typical integral abutment detail (courtesy of Tennessee DOT). 
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Figure 18  Typical semi-integral abutment detail (courtesy of Tennessee DOT). 

 

Poellot (1997) describes one variation of the above approach used by the Pennsylvania DOT. In 

this approach, an interior support in a continuous-span unit is fixed in the tangential direction but 

is freed to move radially. The end bearings are fixed in the radial direction and are freed to move 

tangentially. Other interior bearings are designed as “floating,” or free to move in all directions. 

Both the above chord method and the Pennsylvania method are essentially statically determinate 

and therefore do not develop any forces due to uniform temperature change.  The Pennsylvania 

method eliminates potential misalignments of the roadway at the abutments by allowing radial 

movements at the interior supports rather than at the end bearings.  

 

x
x x

x

FIXEDEXP.
EXP.

EXP.

Chord lines & direction of movement

Guide bars and slotted holes for expansion 

bearings shall be oriented parallel to the 

direction of movement  
 

Figure 19  Bearing orientation to accommodate thermal movement on a horizontally 

curved alignment (NSBA 2004). 
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2.3 Box-Section Stringer System 

 

For bridges subjected to significant torsion, box-girders provide a more efficient usage of 

material. Because of their significant torsional stiffness, box girders are also better suited for 

cantilevering during construction and generally exhibit smaller deflections during erection 

handling. Curved I-girders typically must be connected with cross-frames to ensure their 

stability, but they are more easily deformed to fit up with the other deflected portions of the 

partially completed structure during erection.  

 

Box girders resist torsion predominantly by uniform or St. Venant torsional shear stresses that 

act circumferentially around their closed cross-section periphery as shown in Figure 20. For 

practical bridge box cross-sections, the warping constant is essentially zero and therefore the 

warping stresses associated with the thin-walled beam theory response are small. Nevertheless, 

distortion of the cross-sectional shape in box girders leads to important plate bending and normal 

(warping) stresses (see Figure 20). The magnitude of these stresses must be limited by providing 

intermediate internal cross-frames to maintain the cross-sectional geometry of the box.  

 

= + +

Flexure
Uniform 

Torsion Distortion

Normal stresses:

Shear stresses:



Plate bending  stresses:

 
 

Figure 20  Stresses in a single box girder subjected to an eccentric load. 

 

Box girders are also an efficient option in bridges requiring shallow section depths. Their flanges 

can be made much wider than in I-girders of comparable depth, thus avoiding the need for 

inordinately thick flanges with shallow-depth I-girders. Although AASHTO (2014) Article 

2.5.2.6.3 does not suggest optional L/D limits for steel box-girder bridges, it does suggest a 
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maximum limit of L/D = 40 for continuous-span adjacent box beams in prestressed concrete. 

This limit also appears to be a reasonable maximum for continuous-span steel boxes. However, 

box girder web depths usually should not be less than 5 feet to facilitate fabrication and 

inspection (Hall 1997; Kase 1997). Also, Article 2.5.2.6.3 suggests that girder depths generally 

should be larger in curved bridges to help control relative girder deflections. Due to these 

requirements, steel box girders are used mostly for spans larger than 125 to 150 feet.  

 

Box girders are somewhat less efficient than I-girders in shorter spans having relatively small 

torsion and/or liberal depth requirements, essentially because they have two webs. Furthermore, 

support skew in box girder bridges results in high localized stresses that are difficult to analyze 

and are difficult to design for. Due to this complication, Poellot (1997) states, “I-girders often 

provide the best solution for skewed bridges.” Article C6.11.1 of AASHTO (2014) states, 

“Transverse bending stresses [i.e., the plate bending stresses illustrated in Figure 20] are of 

particular concern in boxes that may be subjected to large torques, e.g., boxes on skewed 

supports.”  

 

The torsional equilibrium of box-girder bridges is less dependent on the interaction between the 

girders, i.e., the transfer of the V-loads shown in Figure 10. The significantly higher torsional 

stiffness of individual box girders allows them to develop substantial St. Venant torques that 

resist the overall torsion on the structure. This reduces the differences in the major-axis bending 

moments across the bridge width caused by the overall torsion and the transfer of the V-loads in 

I-girder bridges. In fact, bridges supporting a roadway with single or dual traffic lanes often can 

be supported by a single box, assuming that redundancy (fracture critical) member 

considerations are addressed. Box girders are very efficient in resisting the torsion in curved 

bridges without the need for interaction between girders through a system of external diaphragms 

and cross-frames. As a result, intermediate external cross-frames often can and should be 

avoided. However, the Engineer should check for differential displacements between girders 

during construction. For example, in some cases, external cross-frames may be beneficial in 

limiting the differential displacements during partial width slab pours. If a pair of bearings is 

provided to develop a torsional reaction under each box at the supports, external diaphragms also 

may be eliminated at these locations unless they are needed to support an expansion joint at end 

supports. AASHTO (2014) requires external cross-frames or diaphragms at end supports to 

accommodate expansion joints and presumably to ensure robust girder end conditions. It is 

important to note that girder torsional rotations at the bearing lines produce rotations within the 

spans that add with torsional rotations due to the girder deformations.  

 

Tub-girders (Figure 21) are the most common type of steel box cross-section in US bridge 

construction. The use of closed-box sections, i.e., sections with a wide steel plate for both the 

bottom and top flanges, is rare due to costs associated with safety requirements for working 

inside of these types of sections. AASHTO (2014) requires that tub girders must be constructed 

with a full-length top lateral bracing system with one exception – straight tub girders in which 

the stability of the top flanges between the diaphragms and the overall global stability of the 

bridge are investigated using the Engineer’s assumed construction sequence. Prior to the 

composite concrete deck becoming effective, girder lengths that do not have a top lateral bracing 

system are open sections with a shear center located below the bottom flange (see Figure 22). As 
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such, they exhibit significant torsional warping stresses and deformations, and their overall 

lateral torsional buckling resistance is substantially reduced.  

 
w a

 
 

Figure 21  Representative tub-girder bridge cross-section. 
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Figure 22  Shear center location and predominant torsional deformations for a tub girder 

section that does not have a top-flange bracing system. 

 

The top lateral bracing system in tub-girder bridges participates with the girder top flanges in 

resisting major-axis flexure. Fan and Helwig (1999) provide equations for estimating the 

corresponding bracing member forces due to overall girder flexure. The forces in the lateral 

bracing system tend to be sensitive to the deck casting sequence. As such, if these members are 

optimized based on an assumed casting sequence, it is imperative that the casting sequence be 

shown on the contract plans. AASHTO (2014) Article C6.7.5.3 indicates that field tests have 

shown that the additional forces attracted to the top lateral system are negligible after composite 

action of the deck is achieved.  

 

The participation of the top lateral bracing system in resisting the overall flexure also can induce 

significant lateral bending stresses in tub-girder top flanges during construction. Alternating 

Warren type single-diagonal lateral bracing systems tend to produce the largest flange lateral 

bending stresses. In curved bridges, the bracing member forces and top flange lateral bending 

stresses can be mitigated by the use of a Pratt type configuration for the top lateral bracing (see 

AASHTO (2014) Article C6.7.5.3). The bracing members are oriented based on the sign of the 

torque, such that the forces induced in these members due to torsion offset their compressive or 

tensile forces caused by overall flexure.  

 

Prior to the deck being made composite, lateral bending also occurs in discretely-braced top 

flanges of tub sections with inclined webs, due to distributed lateral loads transmitted from the 
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webs. These loads come from changes in the web flexural and St. Venant torsional shears per 

unit length along the members. In terms of elementary beam theory, this is similar to p = dV/dx, 

where p is the transverse distributed load per unit length, V is the internal shear force and x is the 

position along the member length. Other sources of significant top flange lateral bending are the 

same as for I-section members. During construction, prior to the slab being made composite, 

flange lateral bending stresses due to horizontal curvature as well as due to eccentric concrete 

deck overhang loads acting on cantilever forming brackets are of particular importance. 

 

Steel box girders with a normal density concrete deck are efficient up to about 500 to 700 feet 

span lengths. Beyond these lengths, the dead weight of the structure becomes more and more 

significant, and the use of an orthotropic steel deck is common. Also, other structural systems 

discussed below are competitive at these longer span lengths. The two longest steel box girder 

spans in the world are 980 and 1230 feet respectively in the Costa-e-Silva Bridge in Rio de 

Janeiro, Brazil (Figure 23 and Figure 24) and the Sfalassà Bridge in Calabria, Italy (Figure 25). 

The Costa-e-Silva Bridge has three continuous spans of 660 – 980 –660 feet. Both of the end 

spans are cantilevered an additional 100 feet into the adjacent spans. The Sfalassà Bridge 

achieves its record span by the use of slanted leg supports, reducing the girder bending moments 

by arch action.  

 

 

 
 

Figure 23  Costa-e-Silva Bridge in Rio de Janeiro, Brazil, second-longest box-girder span, 

980 ft (courtesy of www.structurae.de) 
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Figure 24  Costa-e-Silva Bridge side elevation and cross-section (adapted from Ito et al. 

(1992) and Wolchuk (1997)) 

 

 

 
 

Figure 25  Sfalassà Bridge in Calabria, Italy, longest box-girder span, 1230 ft (courtesy of 

www.structurae.de) 

 

2.4 Truss Bridges 

 

In all of the above bridge types, the structure tends to conform to the roadway and supports it 

from underneath. Through-girder bridges have been constructed in the past, but these systems are 

relatively inefficient since the deck cannot be used compositely. Also, all of the above structures 
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generally support their loads primarily by stringer bending actions. In addition, the stringers have 

solid webs that frame between their flange elements.  

 

As the largest spans discussed in the above sections are approached, the Engineer must consider 

alternative arrangements that involve “open” webs, greater overall depth, and components that 

are primarily loaded in tension or compression. The use of high-strength elements becomes 

particularly beneficial for these systems, due to their larger depth, longer spans, higher dead-to-

live load ratios and smaller live-to-dead load stresses. Furthermore, the roadway may be located 

above, within and or below the structural system, and the roadway geometry tends to be 

relatively simple compared to complex plans such as that shown previously in Figure 6. Truss 

and arch bridges are viable for intermediate spans beyond the above limits, while cable-stayed 

and suspension bridges are necessary for the longest spans. Any of these systems may be used of 

course for smaller span lengths, where stringer systems are viable, for various aesthetic and/or 

functional reasons (e.g., maximizing clearance below the roadway). Also, it is common that 

various combinations of the different structural systems may be used in moderate to longer-span 

structural systems, e.g., use of bottom flange bracing on an I-girder bridge to accomplish pseudo-

box action, use of trussed arches, or use of I-girders, box-girders or trusses as deck systems and 

stiffening elements in cable-stayed and suspension bridges. Truss bridges are addressed briefly in 

this section, followed by arch and cable-supported systems in the next two sections. 

 

Truss bridges achieve their efficiency for spanning longer distances via their light weight due to 

triangulation and the primary action of their members in axial tension and compression. Modern 

highway truss bridges are predominantly either continuous or cantilever structures. Cantilever (or 

Gerber) bridges have intermediate hinges between the supports in their main span and a central 

portion of the main span that is suspended between these points. Typical configurations of truss 

bridges include deck trusses, half-though trusses and through trusses, based on the location of the 

roadway with respect to the depth of the structure. The Ikitsuki Ohashi Bridge in Nagasaki, 

Japan (Figure 26) holds the record span length for a continuous truss bridge (1300 feet) while the 

Quebec Bridge in Quebec, Canada (Figure 27) has the longest cantilever span at 1800 feet.  

 

Truss bridges behave essentially as closed box structures when there are four planes capable of 

resisting shear and the end portals participate significantly in transferring lateral loads to the 

bearings. Their chord and web members are typically H, channel, or box-sections. AASHTO 

(2014) Article 6.14.2.2 requires the members to be symmetrical about the plane of the truss. The 

top chord in a half-through truss is typically unsupported in the lateral direction at the panel 

points, and therefore must be considered as a column with elastic lateral supports at these 

locations. In deck trusses, the slab provides the dual function of supporting the live loads as well 

as bracing the top chords of the truss. A concrete deck can be made to act compositely with a 

deck truss, thus achieving additional structural efficiency. Also, closed-section compression 

chords can be filled with concrete to increase their efficiency. 
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Figure 26  Ikitsuki Ohashi Bridge, Nagasaki, Japan, longest-span continuous truss bridge, 

1300 ft main span (www.sight-seeing.japan.com) 

 

 

 

 
 

Figure 27  Quebec Bridge in Quebec, Canada, longest span cantilever truss bridge, 1800 ft 

main span (courtesy of www.structurae.de). 

 

Trusses are an ideal system to take advantage of recent advances in high-performance steels 

(HPS): high strength, high toughness, and improved weldability. For example, a triangular bridge 

cross-section geometry with a single member along the bottom chord is possible by addressing 

issues of redundancy via improved HPS toughness and/or post-tensioning (see Figure 28).  

 

The reader is referred to Kulicki et al. (2006) and to Kulicki (2000) for detailed discussions of 

various attributes of the design of truss bridges.  

 



 26 

 
 

Figure 28  La Roize Bridge in France, triangular cross-section geometry using a single 

member bottom chord and post-tensioning strand (courtesy of HNTB). 

 

2.5 Arch Bridges 

 

Arches are one of the most beautiful and expressive structural forms. The arch form reduces the 

bending moments in the superstructure and resists loads largely by axial compression in the arch 

ribs, which are the distinctive primary elements of the structure. This compression must be 

balanced either by large horizontal thrusts at the foundation spring lines or by a tension tie 

between the ends of the arch. Arches that rely on their foundations to provide these horizontal 

thrusts are typically referred to as true arches, whereas arches in which the thrusts are developed 

through tie members are referred to as tied arches. In addition, arch bridges may be classified as 

deck, through or half-though. True arches are typically deck type, whereas tied arches are often 

through type. However, both true and tied arches may be constructed with the deck at an 

intermediate elevation between the spring line and the crown, resulting in a half-through arch. 

This would occur for example if the foundation needs to be located above the high-water 

elevation, or if variable foundation conditions require location of the abutments at a specific 

elevation relative to the height of the deck.  

 

The arch rib itself may be either a truss or a girder. Accordingly, arch bridges are referred to as 

truss-ribbed or solid-ribbed. Another classification pertains to the articulation of the arch: fixed, 

two-hinged, or three-hinged. A fixed arch is designed based on complete rotational fixity at its 

supports. If the span is continuous but free to rotate at is ends, the structure is a two-hinged arch. 

Tied arches are practically always two-hinged. In some cases, e.g., during construction, a hinge 

is located at the crown in addition to the end supports. For instance, the top chord in a trussed 

arch rib may be closed at the crown to complete the erection of the structure. If the axis of the 

bottom chord follows the load-thrust line for the three-hinged condition, there is zero stress in the 

top chord and web system. The top chord and the web are stressed only under loads applied after 

the closure. Therefore, they can be made relatively light and the bottom chord of the rib becomes 

the main load-carrying member (Wright and Bunner 2006). Solid rib arches are often designed 

using boxes, to improve their lateral stability. These members may be fabricated with a constant 
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or a variable depth. Concrete-filled high-strength steel box sections can be particularly 

advantageous as arch ribs. The light high-strength steel box section greatly facilitates the 

construction of the rib, and serves to reduce the overall rib weight, while the concrete in-fill 

significantly enhances its compressive strength as well as the completed system stiffness.  

 

In a tied arch, the tension tie is typically a plate or box girder. If the tie is relatively stiff in 

bending compared to the arch rib, it will carry a substantial portion of the live loads. Conversely, 

if the arch rib is stiff in bending relative to the tie, it will support a larger share of the live loads. 

Since the contribution of each of these elements to the live load resistance depends on their 

relative stiffness, it is possible to optimize their sizes based on aesthetics and/or cost. A shallow 

flexible tie girder requires a deep stiff arch rib, whereas a shallow flexible arch rib requires a 

deep stiff tie girder.  

 

Tie girders often are considered as fracture critical members. Their redundancy can be improved 

by bolting their plate components together such that a fracture in one plate will be less likely to 

precipitate the fracture of the entire member. The tie girder can also be prestressed with post-

tensioning tendons, and/or the deck can be designed to participate with the tie girder to ensure 

redundancy. The longitudinal tension can be minimized in a composite deck by making the 

connection to the girders using a closure pour after the majority of the deck has been placed 

(Cassity et al. 2003). The above modifications also increase the structural efficiency of the tie 

girders in resisting the live load. Tied arches typically experience significant variations in length 

of the tie under different load conditions. As such, it is common to provide deck joints at 

intermediate positions along the bridge length. Petzold (2005) discusses a design in which the 

deck joints are eliminated while the deck is structurally separated from the arch itself. The design 

by Cassity et al. (2003) utilizes a jointless composite concrete deck with the tie girders to resist 

residually applied dead loads and live loads.  

 

Most through or half-through arch bridges are constructed with two arch ribs that are each 

located within a vertical plane. However, the arch ribs are sometimes inclined inwards toward 

each other to improve their lateral stability. This can also lead to some economy in the design of 

the bracing system between the arches. A few bridges have been constructed with only one rib 

and with roadways cantilevered on each side of the rib. In this case, both the arch rib and the 

deck system must have considerable torsional and lateral rigidity.  

 

Wire rope, bridge strand or rolled sections are used typically for the hangers in tied arch bridges. 

Bending in the tie girders and the arch rib is reduced generally by shorter spacing of the hangers. 

Diagonal hangers have been used in some tied arch bridges. These types of hangers participate in 

transferring vertical shear forces and tend to reduce the bending moments in the arch ribs and tie 

girders.  

 

Both the in-plane and out-of-plane stability of arch ribs are essential considerations. AASHTO 

(2014) provides limited guidance with respect to the stability design of these components. Article 

4.5.3.2.2c of AASHTO (2014) gives in-plane effective length factors for use in beam-column 

moment amplification equations for three-hinge, two-hinged and fixed arches. It is inferred that 

these effective length factors also may be utilized with the AASHTO column strength equations 

in determining the axial resistance of prismatic solid-rib arches. AASHTO also requires that 
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refined methods of analysis for arches, if used, shall include second-order effects. (AASHTO 

(2014) defines refined methods of analysis as methods that consider the entire superstructure as 

an integral unit and provide directly the system and component deflections and actions.) The 

above approximate AASHTO equations do not account for any vertical restraint from the deck. 

Where such restraint exists, refined analysis methods will give larger buckling loads and smaller 

moment amplification. 

 

For checking stability in the lateral direction, the effective length may be taken as the distance 

between the rib bracing points when a lateral bracing system of adequate stiffness is provided. 

Special consideration of arch-end portal areas is generally necessary. Refined analysis tools 

provide one way of assessing the adequacy of the lateral bracing system and the end portals.  

 

Slant-legged rigid-frame bridges such as the one shown in Figure 29 are essentially a deck-type 

arch form. In this type of bridge, the primary I-girders in the center span function both to support 

the floor system, which spans between the rigid frames, as well as to resist the overall loads by 

arch action and axial compression. The slanted legs in these bridge types typically have variable 

depth webs. The Sfalassà Bridge shown in Figure 25 is a slant-legged rigid-frame design.  

 

The LuPu Bridge in Shanghai, China (Figure 30 and Figure 31) holds the record span for a steel 

arch bridge (1800 feet). This structure is a two-hinged half-through arch with a steel box girder 

rib and an orthotropic deck on floor beams and longitudinal box girders.  

 

The New River Gorge Bridge in West Virginia (Figure 32) is the longest span steel arch bridge 

in the United States (1700 feet). This structure is a two-hinged deck-type arch with a trussed rib. 

The reader is referred to Wright and Bunner (2006), Petzold (2005) and Xanthakos (1994) for 

detailed discussions of various attributes of the design of arch bridges. Heins and Firmage (1979) 

discuss the design of slant-legged rigid-frame highway bridges.  

 

 
 

Figure 29  Slant-legged rigid-frame bridge (courtesy of HDR Engineering, Inc.) 
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Figure 30  LuPu Bridge in Shanghai, China, longest span steel arch, 1800 ft (courtesy of 

www.structurae.de). 

 

 
 

Figure 31  LuPu Bridge deck system (courtesy of www.structurae.de). 

 

 
 

Figure 32  New River Gorge Bridge in West Virginia, longest span steel arch in the United 

States, 1700 ft (courtesy of HDR Engineering, Inc.) 
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2.6 Cable-Supported Bridges 

 

2.6.1 General 

 

The lightness and overall structural efficiency of cable-supported structures are readily apparent 

even to non-engineers. The two major classes of cable-supported bridges are suspension and 

cable-stayed. The fundamental difference between these bridge types is the manner in which the 

deck system is supported by the cables. In suspension bridges, the deck system is supported at 

relatively short intervals by vertical suspenders, which in turn, are supported by the main cables 

(see Figure 33a). Furthermore, the main cables are relatively flexible since they are form-active; 

that is, their geometry is influenced significantly by the magnitude and distribution of the 

loadings. Conversely, in cable-stayed bridges, the deck system is supported directly from the 

towers by relatively straight cables (Figure 33b). This results in a stiff elastic support of the deck 

by the cable system compared to typical suspension bridges. The suspension bridge tends to be 

more efficient in supporting dead load, via the load transfer to the towers in pure tension by the 

funicular action of the main cables. As such, this system type is required for the longest bridge 

spans, where the dead load stresses become more and more dominant. Conversely, cable-stayed 

systems are generally more efficient in supporting live loads, which are less uniform.  

 

 

 
Figure 33  Cable suspended bridge systems, (a) suspension and (b) cable-stayed (reprinted 

with permission from Podolny and Scalzi). 
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Figure 34  Akashi Kaikyo Bridge, longest suspension span (6530 ft) (courtesy of 

www.structurae.de). 

 

The Akashi Kaikyo Bridge on the Kobe-Naruto Route in Japan currently has the longest 

suspension span at 6530 feet (Figure 34), whereas, until recently, the world’s longest cable-

stayed span was 2920 feet in the Tatara Bridge on the Onomichi-Imabari Route in Japan. The 

Cooper River Bridge between Mount Pleasant and Charleston, South Carolina, has the longest 

cable-stayed span in the United States at 1550 feet (Figure 35). This three-span bridge has steel 

I-girder edge beams composite with a precast deck system. 

 

The Sutong Bridge (Figure 36) between the towns of Suzhou and Nantong in Jiangsu province, 

China, has recently set a new record for a cable-stayed span-length (3570 feet). This is a three-

span continuous bridge with a steel deck system. The deck system consists of an orthotropic steel 

box girder, 108 feet wide and 15 feet deep, accommodating six traffic lanes. 
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(a) Aerial view

(b) Elevation view of pylons and cable stays

(c) Installation of edge girder showing cable 

anchorage and studs for development of 

composite concrete deck

(d) Placement of a precast concrete deck panel  
 

Figure 35  Cooper River Bridge, longest cable-stayed span in the USA (1550 ft) (courtesy 

South Carolina DOT). 

 

Longer spans have been contemplated for both of the above system types; however, for larger 

span lengths, an increasing fraction of the allowable cable stresses is taken up by dead load. 

Also, the efficiency of the stays in cable-stayed bridges is reduced more and more by the sag 

under their self weight as the length of the stays is increased. The Akashi Kaikyo Bridge utilizes 

cables with a tensile strength of 260 ksi. Higher strength and/or lighter cables will be needed to 

achieve significantly longer spans in the future.  

 

2.6.2 Suspension Bridges  

 

Most suspension bridges utilize stiffening box girders or trusses at the deck level to ensure 

aerodynamic stability of the structure as well as to limit the local live load deformations in the 

deck system and to distribute these loads among the vertical suspenders. The bridge towers 

transfer a large vertical compression from the main cables to the foundation, and act as lateral 
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supports for the cables and the deck system. The main cables are tied externally to massive 

anchorages at the ends of the structure in most suspension bridges. However, for moderate spans, 

the ends of the main cables can be attached to the stiffening system, in which case the structure is 

self-anchored. If net uplift occurs at the end supports, a tie-down system is necessary. 

 

 
 

Figure 36  Sutong Bridge, longest cable-stayed span in the world (3570 ft) (courtesy of New 

Jersey DOT). 

 

Suspension bridges usually have three spans. When the side spans are relatively short or are not 

required, a single suspended span may be used. In this case, the portions of the main cables from 

the towers to the anchorages are essentially straight and are referred to as straight backstays. 

Two- or four-span suspension bridges are rare because generally it is difficult to resist the 

longitudinal forces at the tops of the towers resulting from live loads; due to the bending of the 

towers, these types of structures are highly flexible.  

 

The center and side spans of suspension bridges are usually simply supported. The stiffening 

girder or truss is sometimes made continuous to reduce the difference in slopes occurring 

between the adjacent spans. However, this results in relatively large bending stresses at the 

towers. I-girders are not typically used as stiffening elements, except for short spans, because of 

the better aerodynamic characteristics of boxes and trusses. Typical span-to-depth ratios for 

stiffening girders or trusses range from about 1/60 to 1/70 of the main span (Podolny and 

Goodyear 2006).  

 

Most suspension bridges utilize vertical suspender cables. However, inclined suspender cables 

have been used in some cases. Inclined cables are capable of transferring vertical loads by truss 

action between the main cables and the stiffening truss or girder.  

 

Typical suspension bridge towers are portal frames. The towers must have a minimum width in 

the direction of the spans sufficient to provide stability, but the width also must be sufficient at 

their top to support the cable saddles. Most suspension bridges have their cables fixed at the top 

of the towers. The towers in longer span bridges generally have fixed bases, but rockers can be 

used at the base for short spans. Because of the tower relative slenderness, the bending stresses in 

the towers due to longitudinal deflections at the tower tops are relatively small.  
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The main cables in modern long-span suspension bridges usually consist of high-strength parallel 

wire strands. However, helical-strand type cables are used in many small to moderate-length 

suspension bridges. The strength and modulus of elasticity of these types of cables are reduced 

by a factor of about one-eighth due to the helical placement of the strands.  

 

Suspension bridges generally require the use of deflection theory, or geometric nonlinear 

analysis, for the calculation of load effects. Use of linear elastic theory results in an 

overestimation of the system stresses and deflections. 

 

2.6.3 Cable-Stayed Bridges 

 

The deck system in cable-stayed bridges acts as a continuous girder over the interior piers, but 

with additional intermediate elastic, but relatively stiff, supports at the anchoring points of the 

stay cables. Typical depths of the deck system range from 1/60 to 1/80 of the span (Podolny and 

Goodyear 2006). The cables induce compressive forces within the deck system. Generally, the 

deck is designed to participate with the girders in supporting these forces. The overall structure is 

usually a closed or self-anchored system.  

 

The designer has a wide range of attributes at his or her disposal that influence the behavior of 

cable-stayed bridge structural systems. These include the number and arrangement of the spans, 

the number and orientation of the cable-stay planes, the layout and number of stays, the type of 

cable, the type of deck system and the construction of the towers.  

 

Although three-span arrangements such as those shown in Figure 33b, Figure 35a and Figure 36 

are the most efficient, two-span layouts such as in Figure 37are also feasible for cable-stayed 

bridges. It is usually desirable to anchor the stays within the side spans of the bridge. However, if 

the side-span is relatively short, some or all of the stay cables may be tied to an independent 

anchorage in the ground. Three-span bridges with a center span length of about 55 % of the total 

length and two equal side anchor spans are common (see Figure 33b). The cables tied to the end 

supports or to ground anchorages within the anchor spans attract larger forces than the cables 

attached to the deck system in these spans.  

 

Cable-stayed bridges with more than three spans tend to induce large bending in the towers 

under live load. The efficiency of these structures can be improved by tying the tower tops 

together with horizontal cables (Figure 38a), tying the tower tops to the girder and tower 

intersection points at the adjacent towers (Figure 38b), adding additional tie-down piers at the 

span centers (Figure 38c) or adding crossing cables at the midspans (Figure 38d) (Tang 2000).  
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Figure 37  Representative two-span cable-stayed bridge system. 

 

 

(a)

(b)

(c)

(d)

 
 

Figure 38  Methods to avoid large tower bending moments in cable-stayed bridge systems 

with more than three spans (Tang 2000). 

 

The use of one plane of cable stays (Figure 39) is aesthetically pleasing and halves the number of 

required shafts in the towers. However, this requires the use of a torsionally stiff deck system. 

Conversely, the use of two planes of stays at the edges of the superstructure permits the use of 

torsionally flexible I-girders (see Figure 35), although the use of box girders can be 

advantageous with two-plane systems in certain bridges. The two-plane system can be oriented 

vertically or twin inclined planes can be connected from the edge of the deck to either an A or 

inverted Y tower. Inclined stays increase the torsional stiffness of the overall structural system.  
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(a) Overall view 

 

(b) Deck system  

Figure 39  Duisberg-Neuenkamp Bridge, Duisberg, Germany, 3-span cable-stayed bridge 

utilizing a single plane of stay cables (1150 ft main span) (courtesy of www.structurae.de). 

 

The two extreme layouts of cable stays are the radial pattern, in which every stay passes over the 

top of the tower(s) (Figure 33b) and the harp pattern, in which all the stays are parallel and are 

spaced roughly equally over the height of the towers (Figure 40a). Structurally, the radial pattern 

is the most efficient, since it avoids placing primary bending moments on the towers and gives 

the largest angle between the stays and the deck. Also, this pattern allows one heavy backstay 

cable to support the full unbalanced component of force from the other cables. However, this 

arrangement complicates the detailing at the top of the tower. The harp pattern induces 

significant bending in the tower unless every backstay cable is anchored to the ground or above a 

pier. It is less efficient structurally, but it is easier to detail. The semi-harp pattern is often a 

satisfactory compromise between these two extremes, allowing fixing of individual cables at the 

towers while reducing the amount of tower bending relative to that caused by the use of the harp 

pattern. AASHTO (2014) requires that cable-stayed bridges must be designed such that the stay 

cables are individually replaceable under reduced traffic loading. This requirement tends to steer 

the designer away from systems with only a few stay cables. Also, in most contemporary 

designs, all the stays are fixed to the towers.  

 
 

(a) harp pattern

(b) semi-harp pattern  
 

Figure 40  Alternative stay layouts, (a) harp pattern and (b) semi-harp pattern 

 

Either spiral or parallel wire strand may be used for the stays in cable-stayed bridges. Spiral 

strand is easier to handle during construction, but has a reduced elastic modulus that depends on 

the lay length of the spiral. Stays composed of prestressing steels are the most prevalent in recent 
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cable-stayed bridge construction. The pitch of the twisted wires in common seven-wire 

prestressing strand is relatively long, and therefore the stiffness of the strand is close to that of 

straight-wire strand and the breaking strength is somewhat larger. The number of strands 

assembled into the stay cables varies depending on the design force. One of the key 

considerations in the development of the end sockets or anchorages for cable stays is the fatigue 

resistance. A number of systems are available that accommodate parallel prestressing strands.  

 

Cable-stayed bridges are highly redundant structures. One important concept of cable-stayed 

bridge design is the freedom to assign a desired value of force to every unknown in the 

indeterminate structure. Therefore, the bending moments and forces under the dead load 

condition can be determined solely based on static equilibrium. There are an infinite number of 

combinations of dead load conditions for a given cable-stayed bridge. The Engineer can select 

the one that gives the most advantageous distribution of stresses throughout the structure when 

the other loads are combined with the dead load.  

 

The construction process must reproduce the selected dead load condition. In a noncomposite 

bridge, the construction stage analysis, which checks the stresses and deflections in the structure 

at every stage of the construction, starts from the selected final condition and works backwards 

to determine the no-load geometry of all the structural components. However, in composite 

structures, creep and shrinkage effects also must be accounted for in a forward calculation 

starting from the beginning of the construction.  

 

For moderate-span cable-stayed bridges, composite concrete decks are common. Orthotropic 

steel decks are used typically in longer spans, where the dead weight is at a more serious 

premium. The underlying girders are usually I-sections or box-sections; box sections are 

essential when torsional stiffness is required. The compression stress in the deck system tends to 

increase proportionally with the span length. For longer spans, the cross-section of the deck 

system may be increased in size near the towers, where the compression is largest, to offset the 

axial compression effects.  

 

High-performance steel is ideal for design of the longitudinal girders in cable-stayed bridges. 

The global moments attracted to the longitudinal girders can be reduced by making the girders 

smaller and more flexible via the use of higher yield strengths, while influencing the overall 

stiffness of the structure little.  

 

The towers in cable-stayed bridges may be steel or concrete. For moderate span lengths, steel 

towers may be advantageous since they can be erected more easily in a limited number of pieces. 

The behavior of the bridge differs depending on whether the towers are fixed or pinned at their 

base. Base fixity increases the moments in the towers significantly, but increases the overall 

rigidity of the structure. Steel towers generally must be designed for overall and local stability. 

The tower members typically have a variable cross-section depth, width and plate thickness over 

their height and are subjected to combined axial compression and biaxial bending moment. In 

addition, they are supported elastically by the cables and in some cases by the deck system. 

Therefore, it is most appropriate to design these members using a refined stability analysis.  
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Tang (1976) considers the elastic buckling of the flexible deck system in cable-stayed bridges. 

He shows that the buckling load is influenced more by the axial stiffness of the cables than the 

flexural stiffness of the deck system. Even if the stiffness of the deck system is neglected, the 

buckling load is typically much larger than the actual loads on the bridge. Model tests (Walther 

et al. 1999) on cable-stayed bridges with slender concrete decks and closely spaced cables have 

confirmed that the deck system usually is not critical with respect to buckling. However, the 

ultimate load capacity of the Tatara Bridge (2920 feet main span) is governed by buckling of its 

steel box girders. A loading test was conducted on a 1/50 scale model to verify the accuracy of 

the analysis and to confirm the structural capacity on this bridge (HSBA 2005). 

 

In contrast to suspension bridge structural systems, the second-order effects on the internal forces 

and system deflections tend to be significant only in longer-span cable-stayed bridges. 

Nevertheless, similar to the behavior of arches, the internal stresses in cable-stayed bridges are 

generally increased due to the second-order effects. This is opposite from the behavior of 

suspension bridges. The geometric nonlinearity of cable-stayed bridges is small enough such that 

a first-order analysis is sufficient in many cases. When second-order effects are expected to be 

more significant, they may be accounted for by first conducting a linear analysis using the 

nominal geometry to determine the deflections, using these deflections to revise the geometry, 

and finally conducting a second linear analysis using the revised geometry. The cable stiffnesses 

are a nonlinear function of the cable tension, due to the sagging of the cables under their self-

weight. AASHTO (2014) gives the following equation for the effective instantaneous elastic 

modulus of stay cables 

 

 2 5 31 cos /12MODE E EAW H   (2.6.3-1) 

 (AASHTO 4.6.3.7-1) 

Where 

 

E = modulus of elasticity of the cable 

 

A = cross-sectional area of the cable 

 

W = cable total weight 

 

 = angle between the chord of the cable and the horizontal 

   

H = horizontal component of the cable force 

 

Note that in the above equation, and throughout this module, the AASHTO number is denoted 

“AASHTO” and provided for any equations defined explicitly in the AASHTO (2014) 

Specifications. For example, Eq. (1) above is AASHTO Eq. 4.6.3.7-1.  (Note that here and 

throughout this module, the section number of the module is not included in the citation of any 

equations, when the citation is located in the same section as the reference.) 

 

The reader is referred to Podolny and Goodyear (2006), Walther et al. (1999), ASCE (1992), 

Troitsky (1988) and Podolny and Scalzi (1986) for detailed discussions pertaining to the 

behavior and design of cable-supported bridges.  



 39 

3.0 ELASTIC SYSTEM ANALYSIS, INELASTIC COMPONENT RESISTANCES 

 

The load and resistance factor design approach implemented in AASHTO (2014) uses the 

general form  

 

 i i Qi < Rn (3-1) 

 (AASHTO 3.4.1-1) 

 

for assessment of the adequacy of the structure. The left-hand side of this equation represents a 

given design load effect, typically calculated by analysis. The right-hand side represents the 

design resistance corresponding to a given limit state. When used to define strength limit states, 

the left- and right-hand sides of Eq. (1) can be referred to as the required and the available design 

strengths respectively. A selected component is adequate for a given limit state if the required 

strength determined by structural analysis is less than or equal to its available design strength. 

The design load effect or required strength is determined as the largest value from various sums 

(or combinations) of appropriate nominal load effects, Qi, multiplied by the load factors i and i. 

The terms i are scale factors that account for the variability and uncertainty associated with each 

of the nominal loads for a given load combination. The various load combinations account 

generally for a maximum lifetime event for a certain loading taken with appropriate arbitrary 

point in time values of other loadings. On the right-hand side of Eq. (1), the  terms are 

resistance factors, which account for the variability, uncertainty and consequences of failure 

associated with different limit states. The parameters i increase or decrease the nominal loads 

based on broad considerations of the ductility, redundancy and operational importance of the 

structure.  

 

With the exception of inelastic redistribution of pier section moments in specific types of 

continuous-span stringer bridges, and inelastic analysis for extreme event limit states (i.e., 

earthquake, ice loads, collision by vessels or vehicles and certain hydraulic events), AASHTO 

(2014) specifies the use of elastic structural analysis for calculation of the design load effects. 

Conversely, the nominal resistances, Rn, in Eq. (1) are based in general on inelastic behavior of 

the structural components. For composite stringers, the concrete section is assumed fully 

effective in positive and negative bending for calculation of the internal forces and moments (in 

the structural analysis), but it is assumed to be fully cracked for calculation of the resistances at 

strength limit states. These apparent inconsistencies are explicitly addressed in several locations 

within the AASHTO (2014) Commentary, i.e., see Articles C1.3.1, C4.1, C4.5.2.2, and 

C6.10.6.2.1. Simply put, the Engineer is allowed to neglect the influence of all material 

nonlinearity on the distribution of forces and moments within the structure up to the limit of 

resistance of the most critical component. Neglected effects include residual stresses in the steel, 

concrete cracking, and various stress contributions that are considered incidental. Numerous 

physical tests indicate that this approximation is acceptable. It is assumed that the resistance of 

the complete structure is reached when the left and right-hand sides of Eq. (1) are equal for the 

most critically loaded component. As explained in Article 1.3.2.4 of AASHTO (2014), multi-

stringer bridges usually have substantial additional reserve capacity beyond this resistance level. 

This is because the live load cannot be positioned to maximize the force effects on all parts of the 

bridge cross-section simultaneously. However, this reserve capacity is not necessary to justify 

the above elastic analysis assumptions. 
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There are three situations in steel design where AASHTO (2014) implements specific restrictions 

to ensure the validity of the above elastic analysis-design approach:  

 

1. For continuous-span girders that are composite in positive bending, AASHTO Article 

6.10.7.1 limits the moment capacity to  

 

Mn = 1.3RhMy (3-2) 

 (AASHTO 6.10.7.1.2-3) 

 

unless specific Appendix B6 requirements are satisfied that ensure ductility of the 

adjacent pier sections. Equation (2) is intended to limit the yielding in positive moment 

regions of continuous-span girders, where the shape factor Mp/My can be larger than 1.5, 

when the inelastic rotation capability of the pier sections is somewhat limited or 

undefined. In many cases, compact-flange pier sections in straight I-girder bridges satisfy 

the Appendix B6 requirements without any special modification. However, the support 

skew must be less than 10 degrees and the ratio of the lateral unbraced length to the 

compression flange width, Lb/bfc, at the pier sections must be approximately 10 or less in 

addition to other requirements for the use of Appendix B. All continuous-span box 

girders are required to satisfy Eq. (2) or more restrictive limits. Equation (2) guards 

against significant partial yielding of the cross-section over a relatively large length 

within the positive moment region, where the moment diagrams and envelopes are 

relatively flat. This helps restrict inelastic redistribution of positive moments to pier 

sections that may have limited ability to sustain these additional uncalculated moments. 

Also, the Engineer should note that the analysis assumption that the slab concrete is fully 

effective in tension and compression tends to give a slightly conservative estimate of the 

true pier section moments, assuming that the cross-sections remain fully elastic in the 

positive moment regions.  

 

2. For curved I-girder bridges, all the composite sections in positive bending are required to 

be considered as noncompact sections. Furthermore, the use of AASHTO (2014) 

Appendix A6 is not permitted for curved I-girder sections in negative bending with 

compact or noncompact webs. Both of these restrictions limit the calculated girder 

flexural resistance to a maximum potential value of  

 

Mn = RbRhMyc  (3-3) 

 

in the absence of any flange lateral bending, where Rb is the web load shedding strength 

reduction factor, equal to 1.0 for noncompact and compact webs, Rh is the hybrid factor, 

and Myc is the nominal yield moment capacity with respect to the compression flange. 

These restrictions are due to the limited data on the influence of partial cross-section 

yielding on the distribution of forces and moments within curved I-girder bridges.  

 

Beshah and Wright (2010) and Jung and White (2010) provide extensive results from a 

full-scale curved composite I-girder bridge test as well as parametric extensions of these 

test results using refined inelastic finite element analysis. All cases considered indicate 

that the influence of partial yielding on the internal forces and moments is small in 
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curved I-girder bridges up to the limit of resistance of the most critical bridge component 

based on the plastic moment Mp with a reduction for flange lateral bending effects. 

However, the majority of these studies focus solely on simple-span bridges. Further 

studies are needed to address the influence of partial cross-section yielding on 

continuous-span curved I-girder bridges. The benefits of designing positive moment 

sections using the plastic moment resistance Mp or Eq. (2) can be significant, although 

AASHTO Article 6.10.7.1.2 specifies a reduction relative to Mp based on ductility 

considerations (see Section 5.3.3 of this module). No studies have been conducted to date 

(2010) that address the potential use of a Eq. (2) or other plastic moment-based resistance 

formulas for curved composite box girders in positive bending.  

 

The Engineer should note that the resistance equations for curved I- and box-girders are 

based generally on some partial cross-section yielding at the calculated limit of the 

resistance. However, Eq. (2) and other Mp-based resistance equations rely on the 

development of a larger extent of yielding.  

 

3. The maximum compression stress in the concrete deck is limited to 0.6f 'c under all 

strength loading conditions for noncompact composite I-sections and box-sections in 

positive bending (see Sections 5.3.3.1 and 5.3.4 of this module for the definition of a 

noncompact composite I-section). This limit is required to ensure linear behavior of the 

concrete. Furthermore, Article C6.10.1.1 of AASHTO (2014) recommends against the 

use of shored composite construction, which is one of the situations where this limit can 

potentially be exceeded. Unshored construction is considered generally more economical. 

Furthermore, as indicated in AASHTO (2014) Article C6.10.1.1.1a, there is limited data 

on the influence of concrete creep on the response of shored composite I-girders 

subjected to large dead load. 

 

In addition to the above restrictions, the structural analysis is required generally to consider the 

separate noncomposite stresses generated in the structure due to self weight and other loadings 

before composite action is achieved, as well as the short and long-term stresses generated in the 

composite structure. Moments from these three different loading conditions may not be added for 

the purpose of calculating stresses, and superposition (based on small-deflection theory) cannot 

be applied for the analysis of construction processes that include changes in the stiffness of the 

structure. Long-term loading effects are considered by use of a modular ratio of 3n, where n = 

Es/Ec is the modular ratio of the composite section for short term loading. Finally, Article 

6.10.1.7 of AASHTO (2014) implements specific slab reinforcing steel requirements for regions 

subjected to negative flexure. These requirements are intended to control concrete cracking, i.e., 

to ensure distributed cracking with small crack widths. This helps ensure the validity of the 

assumption of taking the concrete as fully effective in tension for calculation of the elastic 

internal forces and moments. 

 

AASHTO (2014) Article C4.5.3.1 states that small-deflection theory, or a geometrically linear or 

first-order analysis, is usually adequate for stringer-type bridges. The terms first-order analysis, 

geometrically linear analysis or small-deflection theory all indicate that equilibrium of the 

structure is considered on the undeflected geometry. Article C4.5.3.1 also indicates that bridges 

that resist loads by a couple whose tensile and compressive forces remain essentially in fixed 
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positions relative to each other while the bridge deflects, such as trusses and tied arches, tend to 

be insensitive to deformations. However, the internal forces and bending moments can be 

influenced significantly by second-order effects in structures with members or components 

subjected to significant axial compression relative to their elastic buckling resistance. Also, the 

internal forces in form-active structures, such as suspension bridges, are influenced significantly 

by these effects.  

 

In some stringer-type bridges, construction deflections and stresses (prior to the completion of 

the full structure) may be influenced significantly by second-order effects. For example, the 

torsional deformations during construction of some curved and/or skewed I-girder bridges are 

sensitive to these effects (Jung and White 2010; Chang and White 2010). The influence of 

second-order effects on the flange lateral bending stresses can be significant in straight or curved 

fascia I-girders subjected to eccentric concrete deck overhang loads acting on cantilever forming 

brackets. In these cases, an approximate second-order analysis consisting of applying 

amplification factors to the internal stresses obtained from first-order methods is essential at a 

minimum (Section 5.3.7.2 outlines AASHTO (2014) recommendations for such an analysis). As 

the second-order effects become larger, the use of a refined second-order analysis is prudent.  

 

The term second-order analysis indicates that equilibrium is evaluated on the deflected geometry 

of the structure. The second-order effects are the changes in the deflections, internal forces and 

internal moments, relative to those estimated from first-order analysis, due to considering 

equilibrium on the deflected geometry. First-order analysis is sufficient generally for calculation 

of live load effects on all stringer-type bridges in their final constructed configuration.  

 

The component resistance equations in AASHTO (2014), and the strength limit states checks 

represented by Eq. (1), are based on the assumption that the second-order elastic internal stresses 

on the initially perfect structure (no consideration of geometric imperfections), are calculated 

with sufficient accuracy in cases where these effects are important. That is, initial geometric 

imperfections within fabrication and erection tolerances do not need to be considered in the 

analysis. These effects are considered in addition to the effects of initial residual stresses within 

the component resistance equations. Various other incidental contributions to the internal stresses 

are neglected generally at the discretion of the engineer. These include flange lateral bending 

stresses in straight non-skewed I-girder bridges, stresses due to restraint of thermal expansion, 

longitudinal warping stresses in boxes under strength loading conditions, and St. Venant 

torsional shear stresses in I-section members.  

 

Article C6.7.2 of AASHTO (2014) states that the Engineer may need to consider the potential for 

problematic locked-in stresses in curved I-girder flanges or the cross-frames or diaphragms of 

curved I-girder bridges when the cross-frames are detailed such that they fit up with the I-girders 

in an idealized web-plumb position under the steel or total dead load. This article states further, 

“The decision as to when these stresses should be evaluated is currently a matter of engineering 

judgment. It is anticipated that these stresses will be of little consequence in the vast majority of 

cases …” Chang and White (2010) have developed and applied prototype tools that permit the 

precise calculation of erection stresses and deflections in curved I-girder bridges. Their results 

support the above statement, although one of their examples illustrates a curved I-girder bridge 

where consideration of lack-of-fit and second-order effects is important.  
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Many of the provisions in AASHTO (2014) Chapter 4 address the appropriate assumptions and 

limits for the use of approximate analysis methods. The approximate analysis of stringer-type 

bridges using line-girder models receives substantial attention in this chapter. AASHTO Article 

4.1 states: 

 

“The primary objective in the use of more sophisticated methods of analysis is to obtain a 

better understanding of the structural behavior. Such improved understanding may often, 

but not always, lead to the potential for saving material…. With rapidly improving 

computing technology, the more refined and complex methods of analysis are expected to 

become commonplace. Hence, this section addresses the assumptions and limitations of 

such methods. It is important that the user understand the method employed and its 

associated limitations.” 

 

One of the limitations of general second-order elastic analysis methods is that superposition of 

the effects from separate loading types is not valid. With these methods, the structure strictly 

must be analyzed for each load combination and load placement. However, various 

simplifications and approximations allow for limited superposition of certain results. For 

example, for a curved I-girder bridge that is sensitive to second-order effects in its noncomposite 

condition but insensitive to these effects after the structure is made composite, second-order 

analysis can be employed to determine the dead load and construction stresses. The results from 

a first-order geometrically linear analysis can be subsequently added to these stresses for 

evaluation of the composite structure (Jung and White 2010; Chang and White 2010). For 

suspension bridges, Podolny and Goodyear (2006) discuss commonly employed approximate 

linearized solutions that allow the development and use of influence lines.  
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4.0 OVERALL SYSTEM BUCKLING VERSUS INDIVIDUAL MEMBER BUCKLING  

 

4.1 Key Concepts 

 

One question that has been raised by numerous organizations in the recent past is what type of 

analysis and/or AASHTO provision checks are sufficient to assess the overall stability of a 

bridge structural system during construction. For instance, what constitutes a sufficient check of 

the overall stability of a straight tub girder that does not have a full-length top lateral bracing 

system? At issue is the fact that in most cases, the overall stability of stringer-type bridges is 

ensured by checking member buckling resistances for the unbraced lengths between the cross-

frame or diaphragm locations. However, checking of the top flanges of a single tub girder in this 

fashion does not generally represent an adequate assessment of the overall stability of the 

structure. For this type of system, a direct global assessment of the buckling load of the full 

structure is necessary. Yura and Widianto (2005) discuss a number of approximate and refined 

solutions for assessment of the overall buckling of tub girders that do not have a full-length top-

flange bracing system. In addition, an expanded set of related recommendations have been 

published recently for I-girders by Yura et al. (2008). Yura and Widianto demonstrate that the 

overall elastic buckling of individual tub-girders with no top-flange bracing is represented 

accurately, for the case of uniform bending (Cb = 1), by the analytical solution for a singly-

symmetric open-section member. This solution may be written concisely as  
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(White and Jung 2003b), where x and Cw are respectively the coefficient of monosymmetry and 

the warping constant for the cross-section. These constants are determined from thin-walled 

open-section beam theory, e.g., see Galambos (1968) and Heins (1975). The properties Iy and J 

are the moment of inertia of the tub section about the axis orthogonal to the axis of bending and 

the St. Venant torsional constant, and L is the overall span length. Yura and Widianto (2005) also 

illustrate that modified forms of Eq. (1), which account for the influence of pre-buckling 

displacements on Mcr, have little practical significance because of necessary stress and deflection 

limits. In addition, they point out that the alternate modified forms are not appropriate for 

cambered girders. The Engineer should note that Eq. (1) applies only to tub girders that do not 

have top-flange bracing. Tub girders designed with a full-length top lateral bracing system 

satisfying the AASHTO (2014) requirements do not need to be checked for overall lateral-

torsional buckling.  In addition, it should be noted that this equation applies to both straight and 

curved tub-girders. Similar to the fact that the in-plane elastic flexural buckling of a beam-

column is relatively insensitive to the applied bending moments (McGuire 1968), the overall 

elastic buckling load of structural members generally is insensitive to horizontal curvature. 
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Figure 41  Dual-girder subassembly composed of two equal-size doubly-symmetric I-

girders 

 

Yura and Widianto (2005) and Yura et al. (2008) also show that twin-I-girder systems also can 

be susceptible to overall lateral-torsional buckling in some cases where the spacing between the 

girders is small relative to the span length. That is, their equations show that in some cases, the 

stability of two I-girder assemblies connected together by cross-frames may be governed by 

overall buckling rather than by buckling of the individual I-girders between the cross-frame 

locations. The elastic critical moment of the simply-supported doubly-symmetric two-girder 

system shown in Figure 41 is obtained for the case of uniform bending simply by substituting Iy 

= 2Iyo, J = 2Jo and Cw = 2Iyo (h/2)
2
 + 2Ixo (S/2)

2
 into the classical elastic LTB equation from 

Timoshenko and Gere (1961),  
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Where 

 

Jo = St. Venant torsional constant 

   

Iyo = weak-axis moment of inertia 

   

The above expression for Cw is obtained from thin-walled open-section beam theory for the 

equal-size doubly-symmetric two-I-girder cross-section which gives 
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By retaining only the Ixo term from Eq. (3), Yura and Widianto (2005) and Yura et al. (2008) 

obtain the following simplified expression, which is typically only a few percent conservative: 
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In some two-girder cases, Mcr from Eq. (4) will be smaller than the elastic buckling capacity of 

the girder unbraced lengths between the cross-frames. That is, the lateral-torsional buckling 

strength of two I-girders, connected together by cross-frames for handling as a single unit during 

erection, is governed by overall buckling of the assembly, not by the buckling of the members 

between the brace points. This can be demonstrated by considering the conditions that make Mcr 

from Eq. (4) smaller than the following simplified form of the elastic critical moment for lateral-

torsional buckling of the doubly-symmetric I-section members between the cross-frames: 
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After algebraic manipulation, one can observe that the buckling of the two girders as a system is 

more critical when  
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Furthermore, if one substitutes the approximations Iyo = bf
3
tf/6 and Ixo = bftfh

2
/2 into Eq. (6), this 

equation simplifies to  

 

0.6
fb

bL

L S
  or 0.6

fb
bL h

L h S
  (4-7) 

 

The Engineer may note that Eq. (7) is based on the assumption of uniform bending throughout 

the span length L. If one considers the influence of moment gradient, the critical moment for 

overall buckling of the system (Eq. (4)) tends to be increased more than that for the buckling 

between the critical cross-frame locations (Eq. (5)). However, continuity of the critical unbraced 

segments with adjacent unbraced lengths, which is neglected in Eq. (5), tends to offset this 

moment gradient effect. Therefore, Eq. (7) gives a reasonable estimate of the ratio Lb/L below 

which the twin-girder system buckling moment is smaller than the moment at the buckling of the 

individual unbraced lengths between the cross-frames.  

 

Figure 42 illustrates the determination of whether system buckling or buckling of the girders 

between the cross-frames governs for two example cases based on Eq. (7). The plot on the left 

shows the Lb/L limit versus the girder depth-to-flange width ratio h/bf for two equal-size doubly-

symmetric girders with a spacing-to-depth ratio S/h of 2. The plot on the right shows the Lb/L 

limit versus S/h for two equal-size doubly-symmetric girders with h/bf = 3. Suppose that the 

girders have five equally spaced unbraced lengths, or four internal cross-frames, such that Lb/L = 

0.2. The plot on the left shows that the buckling of the twin-girder system with S/h = 2 is more 

critical than that of the individual girders when h/bf is smaller than about 4.5. The plot on the 

right shows that the buckling of the twin-girder system with h/bf = 3 is more critical than that of 

the individual girders when S/h is less than about 3.0.  
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Figure 42  Example determination of whether system buckling or buckling of the girders 

between the cross-frames governs for two equal-size doubly-symmetric I-girders. 

 

Expressions similar to Eq. (7) can be derived for assemblies of three or more girders. Such 

expressions show that in some cases, system buckling of these assemblies can be more critical 

than the buckling of the individual I-girder unbraced lengths. In addition, the overall elastic 

buckling capacity of two equal-size singly-symmetric I-girders can be estimated in a manner 

similar to the development of Eqs. (3) and (4), by using an effective lateral bending moment of 

inertia, and moment gradient effects can be approximated by including a Cb factor (Yura et al. 

2008).  

 

Bridge I-section members are commonly non-prismatic (e.g., they have cross-section 

transitions), they are subjected to non-constant bending moment along their lengths, and I-girder 

pairs are not necessarily composed of equal-size I-section members. Nevertheless, the above are 

useful base equations that are helpful for gaging when overall system buckling may govern 

relative to the common design assumption of buckling of the girders between the brace points. 

For realistic practical cases involving deep, closely-spaced, narrow-flange I-section members, 

the Engineer should consider running a refined buckling analysis to check the lateral-torsional 

buckling capacity of girder assemblies during construction. If the governing elastic buckling load 

is sufficiently large relative to the applied loads, then neither local nor global stability is an issue. 

Section 4.3 of this module outlines the specifics of this type of global stability check. 

 

4.2 Lean-On Bracing Systems 

 

It is possible to achieve substantial economy in the design of cross-frames in straight I-girder 

bridges by utilizing lean-on bracing concepts (Helwig et al. 2005; Herman et al. 2005). Using 

these concepts, multiple I-girders can be braced by a single cross-frame, given that they are tied 

to the cross-frame by top and bottom struts as shown in Figure 43. This approach can be 

particularly useful to eliminate cross-frames that may otherwise attract large forces, and to 

reduce the I-girder flange lateral bending stresses, in skewed I-girder bridges. Such a case is 

illustrated in Figure 44, which illustrates the cross-frame placement in a two-span TxDOT proof-

of-concept bridge as presented by Helwig et al. (2005) and Herman et al. (2005). In this design, 

the individual I-girders tend to respond in a fashion closer to that of a non-skewed bridge. The 

top and bottom struts across the width of the bridge work with the bays containing cross-frame 
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diagonals provide the lateral stability to all of the girders. However, the bays containing only top 

and bottom struts and no diagonals rack due to differential girder vertical displacements (i.e., the 

top and bottom struts rotate relative to the girder cross-sections in the plane of the cross frames), 

thus reducing the twisting of the girders and avoiding the development of large cross-frame 

forces. 

 

Cross-Frame Lean-on bracing provided

by top and bottom struts  
 

Figure 43  A single cross-frame bridge cross-section showing multiple I-girders braced by a 

single cross-frame 

 

Equations (4-4) and (4-7), or related equations for singly-symmetric I-girders, are not valid for 

bridges that utilize lean-on bracing concepts. The cross-frame sizes and their locations must be 

designed to provide overall lateral and lateral-torsional stability of the structural system at all 

stages of the erection process. Helwig et al. (2005) and Herman et al. (2005) provide equations 

for estimating the bracing stiffness and force requirements due to stability effects. Refined 

analysis tools can be valuable for checking the overall stability of this type of bridge during 

various stages of construction.  

 

In the design shown in Figure 44, cross-frames are placed across the entire width of the bridge at 

the supports. Also, a pair of cross-frames is provided at the mid-width of the bridge near the  

middle of each span. Furthermore, at least one in-span cross-frame is located between each of the 

girders, several additional cross-frames are located near the field splice locations, and a few 

additional cross-frames are provided to limit the differential deflection between adjacent girders 

during the slab casting. The reader is referred to Helwig et al. (2005) or Herman et al. (2005) for 

discussion of the detailed considerations. The total number of intermediate cross-frames is 

reduced from 128 to 35 after accounting for all of these factors. The authors suggest that a larger 

number of cross-frames should be used in broader implementation of the lean-on bracing 

concepts, with an important goal being flexibility for the erector to select various sequences of 

erection. For instance, they suggest that cross-frames should be located between each of the 

girders near field splice locations.  
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Figure 44  Plan view of a proof-of-concept skewed I-girder bridge utilizing lean-on bracing 

to alleviate large cross-frame forces and to reduce the number of required cross-frames 

(Herman et al. 2005) (reprinted with permission from Texas DOT). The x marks indicate 

the location of cross-frames. 

 

4.3 General Consideration of System Stability Effects in Design  

 

In all of the above cases, when the system elastic buckling resistance is smaller than the elastic 

lateral-torsional buckling resistance of the I-girders between the cross-frame brace points, the 

Engineer generally should evaluate whether the maximum compression flange elastic buckling 

stress is larger than the nominal stress magnitude, Fyr, at which yielding occurs due to residual 

stress effects. When the elastic critical stress Fe = Me/Sxc is larger than Fyr, an inelastic system 

buckling should be considered using the generalized equations discussed subsequently in Section 

5.3.6 of this module. These situations will rarely occur in practical stringer bridge. The structure 

in its final constructed configuration will typically be such that its member strengths are not 

governed by an overall global buckling mode, and for the structure at critical intermediate stages 

during construction, the stresses should generally be small enough such that the structure is not 

close to the onset of any nominal yielding.   

 

In cases where the girder flanges are subjected to significant lateral bending in addition to the 

major-axis bending stresses, fb, the Engineer should consider the second-order elastic 

amplification of the flange lateral bending stresses due to the overall system stability effects 

when fb/Fe is larger than about 0.1 to 0.2. For most bridges where this consideration may be 

important, it is expected that it will be important only during construction.  

 

For large arch and cable-supported bridges, detailed three-dimensional finite element analyses of 

the overall structure including geometric and material nonlinearity, residual stresses and 

geometric imperfections may be desirable for assessment of the overall response at strength load 

levels. This type of analysis may be conducted with a number of the most sophisticated 

commercially available software packages. Detailed elastic finite element analysis of these types 

of structures is commonly employed for evaluation of component stresses at a minimum (Ito et 

al. 1992). However, it must always be recognized that good design of bridges is not achieved 

simply by running computer programs. Computer software should be considered as only one of 



 50 

many essential design tools. Also, the Engineer should always keep in mind the famous words of 

Professor Hardy Cross (1952),  

 

“…strength is essential and otherwise unimportant. 

 

Various sources aid the engineer in determining strength. No one of them is more 

important than another. Analyses, tests, experience and such intuitive common sense as 

may be personally developed about structural stability; these are all helpful, but they can 

also be dangerously misleading. Evidence from the four sources rarely agrees completely. 

Great engineers are those who can weigh this evidence and arrive at a reasonable answer 

through judgment as to its dependability…. 

 

The important point here is that some types of planning, designing and experimenting can 

be put on an assembly line and some types can be put on an assembly line of skilled 

brains only, but much of the most important work cannot be done by using fixed rules, 

standardized formulas or rigid methods. 

 

In general the objectives are flexibility of design and simplicity of construction…. 

 

…Men must learn to think more clearly in space and be less restricted to two-dimensional 

design. They must pay more attention to movements and vibrations. They need much 

more information on the properties of materials. Probably they need to reappraise 

seriously the importance of durability…”  
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5.0 MEMBER BEHAVIOR AND DESIGN STRENGTH 

 

5.1 Tension Members 

 

5.1.1 Rolled or Built-Up Tension Members 

 

The strength of rolled section tension members, or tension members built up from rolled sections 

and/or steel plates, is governed by the most critical of the following limit states: 

 

 Overall tension yielding of the member along its length,  

 

 Tension fracture of the member across a net section (referred to by AISC (2010) as 

tension rupture),  

 

 Block shear rupture along a shear failure path or paths combined with a perpendicular 

tension failure path at the end connections,  

 

 Failure of the connecting bolts or welds in one of a number of modes, or 

 

 Failure of the connecting elements such as gusset plates or splice plates.  

 

The last three are considered as connection limit states by AASHTO (2014) and hence are not 

within the scope of this module. They are addressed in Article 6.13 of the AASHTO 

Specification. However, the first two limit states are considered as member limit states and are 

addressed in Article 6.8. The tension yielding resistance is given by the equation 

 

y Pny = 0.95 Fy Ag                (5.1.1-1) 

                     (AASHTO 6.8.2.1-1) 

 

Where 

 

Fy = specified minimum yield strength and  

Ag = gross cross-sectional area of the member,  

   

while the tension fracture resistance is expressed as 

 

u Pnu = 0.80 Fu An Rp U             (5.1.1-2) 

                   (AASHTO 6.8.2.1-2) 

 

Where 

 

Fu = ultimate tensile strength 

 

An = member net area 
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Rp = reduction factor for holes, taken equal to 0.90 for bolt holes punched full size and 1.0 

for bolt holes drilled fill size or subpunched and reamed to size 

 

U = shear lag factor 

 

Although ductile steel members loaded in axial tension can generally resist a force greater than 

the product of their gross area and the specified minimum yield stress, substantial elongation due 

to yielding throughout the gross area along the member length can precipitate the failure of the 

structural system of which the member is a part. Therefore, overall yielding of the gross area is 

considered as a strength limit state.  

 

On the other hand, depending on the mechanical properties of the steel (the most important of 

which is the tensile-to-yield ratio Fu/Fy), the ratio of the net area to the gross area An/Ag and the 

end connection geometry (captured by the parameter U), a member can fail by tension fracture at 

one of its end connections before full yielding of its gross area. However, the larger tensile 

strains at the end connections are highly localized. Therefore, yielding at the end connections 

does not constitute a limit state of practical significance.  

 

If fastener holes are located at some position along the member length, the net section at these 

holes also must be checked in general for tension fracture on the net section through the holes. 

However, AASHTO (2014) indicates appropriately that holes larger than typical fastener holes 

shall be deducted from the gross area rather than from the net area. This includes access holes 

and perforations in built-up members. In other words, these locations are designed for general 

yielding over their net area.  

 

The net area for the tension fracture check can be expressed generally as: 

 

An = Ag – area lost due to holes                                                                       (5.1.1-3) 

 

Therefore, for fully welded connections without any plug or slot welds, An = Ag. In cases with 

plug or slot welds, the width of the original hole for the weld is handled in the same fashion as a 

fastener hole. For hole arrangements without any stagger, Eq. (3) becomes: 

 

An = Ag –  de t                                                                                               (5.1.1-4) 

 

Where 

 

de = effective width deducted for a given hole, equal to the nominal diameter or width of 

the hole perpendicular to the tension direction. 

 

T = thickness of the plate at the hole. 

 

Although AISC (2010) adds an additional 1/16 in to the nominal diameter in its calculation of de, 

to account in general for potential damage due to the fabrication of the hole, AASHTO (2014) 

does not. In the AASHTO provisions, the influence of damage around the hole is included, for 
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bolt holes punched full size, by the using Rp = 0.9. No net area reduction is taken for bolt holes 

drilled full size or subpunched and reamed to size.  

 

The summation in Eq. (4) is over all of the holes located across a potential transverse fracture 

path through all of the components of the member cross-section. For staggered hole 

arrangements, the net area is given by: 

 

An = Ag –  de t +  (s
2
/4g) t                      (5.1.1-5) 

 

where: 

 

s = longitudinal center-to-center spacing (pitch) between two consecutive holes 

 

g = transverse center-to-center spacing (gage) between the hole gage lines 

 

t = plate thickness along a given diagonal. 

 

The second summation is over each diagonal in a potential zigzag fracture path through a chain 

of holes across all the member components 

 

For angles, channels, boxes, etc. where the diagonal in the fracture path goes around a corner 

from one to another plate, the gage g is the transverse distance between the adjacent holes along 

the mid-thickness of the plates. That is, the gage can be determined by imagining that the plates 

are unfolded into a single flat plate at the mid-thickness of the plates. The critical chain of holes 

is taken as the one that gives the smallest net area. The corresponding fracture path can be either 

a straight or a zigzag transverse line.  

 

The above approach is based on the assumption that the full tensile force acts at every potential 

straight or zigzag transverse fracture path through a set of holes. AASHTO (2014) indicates that 

a slightly less conservative calculation is obtained by subtracting the force removed by each bolt 

ahead of the fracture path being considered, i.e., closer to the mid-length of the member, from 

the full tensile force. The full force is assumed to be transferred equally by each bolt in the 

connection in making this calculation. In this case, a pseudo net area that can be used to 

determine the full member tension fracture resistance may be calculated as 

 

 2 / 4 total
n g e
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A A d t s g

n
   
 

 (5.1.1-6) 

where: 

 

ntotal = total number of bolts in the connection 

 

nr = remaining number of bolts after deducting the number ahead of the fracture path 

   

McGuire (1968) provides extensive discussion of the “s
2
/4g” rule for estimating the effect of 

zigzag paths on the tension fracture resistance. Although other approaches exist that have a 
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stronger theoretical basis, the corresponding equations are more complex without any significant 

improvement in accuracy.  

 

As noted in the definitions just after Eq. (2), U accounts for the shear lag effects associated with 

the end connection geometry. If a line of fastener holes is placed across the cross-section of a 

member at some location within the member length, but no bolts or welds that transmit tension 

force to the member are located in these holes, U = 1. Also, if the tension force is transmitted 

directly to every component plate of a member cross-section by bolts or welds, U = 1. However, 

if some of the components are unconnected at the member ends, the critical net section may not 

be fully effective. Table 1 gives the recommended values and equations for U in AASHTO 

(2014). AASTHO (2014) Article 6.8.2.2 also states that for members composed of more than one 

plate element, the calculated value of U should not be taken less than the ratio of the gross area 

of the connected element(s) to the member gross area.  
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Table 1  Recommended AASHTO (2014) values and equations for the shear lag factor U. 
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These AASHTO provisions are adapted from similar provisions in AISC (2005) and are based on 

the research by Munse and Chesson (1963), Easterling and Gonzales (1993) and Cheng and 

Kulak (2000).  

 

The AISC (2010) provisions for the shear lag reduction factor U include the above rule for the 

limit on the minimum U value, and they address a few additional refinements not included in the 

AISC (2005) and AASHTO (2014) provisions:  (1) both single and double angles are included in 

Case 8 in Table 1, (2) for the case of single angles with fewer than three fasteners per line in the 

direction of the loading, Case 2 of Table 1 is recommended, and (3) the provisions state 

explicitly that the above limit on the minimum U value does not apply to closed sections, such as 

HSS, nor to plates. 

 

AASHTO (2014) specifies limits on the slenderness ratio L/r for rolled and built-up I-section 

members to ensure adequate performance, where L is the member unsupported length and r is the 

minimum radius of gyration of the cross-section. For main members subject to stress reversals, 

L/r is limited to 140, for main members not subject to stress reversals, L/r is limited to 200, and 

for bracing members, L/r is limited to 240. For tension members with perforated plates or tie 

plates with or without lacing, a number of other requirements (dimensional, etc.) are specified in 

AASHTO (2014) Article 6.8.5 or are provided in the commentary to this section by reference to 

AISC (2005) and AASHTO (2002).  

 

5.1.2 Eyebars and Pin-Connected Plates 

 

AASHTO (2014) Article 6.8.6 specifies that the factored resistance of eyebars is given by Eq. 

(5.1.1-1) based on the area of the body, w t, and provides dimensional requirements to ensure that 

tension fracture will not occur.  Figure 45 shows these and several additional dimensional 

requirements. Two requirements are listed from AISC (2010) that are believed to be intended, 

given the origins of the rules (McGuire 1968). The requirements in Figure 45 are based largely 

on judgment and traditional rules of practice that have evolved over many years. McGuire (1968) 

points out that the behavior of eyebars and pin-connected plates differs somewhat from that of 

bolted or riveted tension members and provides an extensive review of the traditional 

requirements and their relationship to theory and experimental studies. The in-plane bending 

deformations and localized strains tend to be larger around the large pin hole compared to typical 

local deformations in bolted or riveted connections.  

 

AASHTO (2014) Article 6.8.7 requires that pin-connected plates shall be designed using Eqs. 

(5.1.1-1) and (5.1.1-2) with U = 1.0. Pin-connected plates are defined as members in which “pin-

plates” may be attached to a main plate by bolts or welds to increase the thickness near the pin. 

AASHTO requires that the pin plates, if used, should be arranged to minimize the load 

eccentricity, and that they must be attached to the main plate by sufficient welds or bolts to 

transmit the pin bearing forces from the pin-plates to the main plate. The combination of the 

main and pin plates must be checked for net section fracture at the pin hole. Also, the main plate 

and pin plates must be checked for fracture across their individual net sections at the attachments 

of the pin plates to the main plate, considering the force transfer between the plates. In addition, 

AASHTO specifies a bearing resistance on the projected area of the pin, Ab = tm dp or tp dp, of  
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bPn = 1.0 Ab Fy   (5.1.2-1) 

 (AASHTO 6.8.7.2-1) 

 

for each of the plates, where Fy is the specified minimum yield strength of the plate. Figure 46 

summarizes additional requirements for a specific pin-connected plate with two equal size pin 

plates bolted on each side of the main plate, a width of the pin plates equal to the width of the 

main plate, w, and an end distance from the pin to the end of the pin plates equal to that of the 

main member, a. These requirements, combined with the above tension yielding, tension fracture 

and plate bearing checks, are intended to ensure acceptable behavior of the assembly.  

 

One additional requirement is shown in Figure 46 that is not specified explicitly in AASHTO 

(2014) or AISC (2010). It would appear that the dimension from the edge of the pin-hole to the 

edge of the pin-plates parallel to the direction of the load should be essentially the same on each 

side of the pin to ensure good performance (hence the dimension labeled “ a”). Also, the 

connection of the pin plates to the main plates should be distributed over the pin plates such that 

the localized effects of the pin are diminished at the critical net section for the tension fracture 

check of the main plate.  

t

P P

(1) Thickness (t) shall be uniform, with 

no hole reinforcement

(2) 0.5 in < t < 2 in 

(3) r > D

(4) D > 1.35 w

(5) a > 0.75 w

(6) w < 8 t

(7) dh  dp < 1/32 in 

(8) dh < 5t  for steels with Fy > 70 ksi

(9) a = b                (AISC 2010)

(10) dp > 0.875 w  (AISC 2010)

r

b

b

dhD w

a

(11) Eyebars of a set shall be sym. about central plane of 

  member & as parallel as practical

(12) Eyebars shall be restrained against lateral movement on    

  the pins and lateral distortion

(13) Adjacent bars in the same panel shall be separated by 

  at least 0.5 in; Ring shaped spacers shall be provided 

  to fill gaps between adjacent eyebars on a pin

(14) Intersecting diagonal bars that are not sufficiently spaced 

  to clear each other at all times shall be clamped together 

  at the intersection

dp

 
 

Figure 45  Dimensional requirements for eyebars specified to ensure good member 

performance and development of the full yield capacity of an eyebar. 
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AASHTO (2014) states that pin-connected plates should be avoided wherever possible. AISC 

(2010) indicates that pin-connected plates are not recommended when there is sufficient 

variation in live loading to cause wearing of the pins in the holes. McGuire (1968) points out that 

pin-connected plates and eyebars were common in the nineteenth century, when they were more 

economical and faster to erect than hand-riveted construction, and when Engineers were often 

concerned with minimizing secondary stresses. Also, he indicates that given current knowledge 

about secondary stresses, and when they are or are not important, there is less concern in modern 

design about their minimization in all structures. Consequently, trusses having all or most joints 

pinned have largely disappeared.  
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(1) Thickness (t) need not be uniform, i.e., the main plate may be reinforced by pin plates in the vicinity of the pin hole

(2) The pin plates, if used, shall be arranged to minimize the load eccentricity

(3) The pin plates, if used, shall be attached to the main plate by sufficient welds or bolts to transmit the bearing 

forces from the pin plates to the main plate

(4) Transverse net area requirement, to ensure against tensile fracture at a transverse section through the centerline 

of the pin hole:

 

(5) Longitudinal net area requirement, to ensure against tearing of the pin out of the end of the pin connected member:

(6) The pin hole shall be centered on the longitudinal axis of the main plate

(7) dh  dp < 1/32 in 

(8) dh < 5 (2tp + tm)  for steels with Fy > 70 ksi

(9) 2tp + tm > 0.12 [w/2 - (dh + 1/16)/2 - (dh2 + 1/16)]  

(10) w < 8 tm

(11) Pin-connected plates shall be restrained against lateral movement on the pins and lateral distortion

(12) Corners may be cut at 45
o
 if e > a (assuming one bolt hole along e, and one bolt hole along a in this example)      

  (AISC 2010)
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Figure 46  Requirements in addition to the checks of tension yielding, tension fracture and 

plate bearing, for a specific pin connected plate with two equal size pin plates (w, a and e of 

pin plates = w, a and e of main plate) bolted on each side of the main plate. 

 

5.1.3 Strands 

 

AASHTO (2014) references three types of strand commonly used in bridge construction: 

 

 Uncoated seven-wire stress-relieved strand for prestressed concrete (also used for stay 

cables and for prestressing of steel members), ASTM A416, 
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 Zinc-coated parallel and helical wire structural strand, ASTM A586, and 

 

 Zinc-coated steel structural wire rope, ASTM A603.  

 

The latter two strand types are referred to generally as bridge strand. Bridge strand is not used for 

major cable-stayed bridges or for prestressing steel, generally due to its lower stiffness. 

However, structural strand and structural wire rope are used for hangers in arch and suspension 

bridges.  

 

In helical steel wire structural strand, the wires are laid helically about a center wire to produce a 

symmetrical section. Structural wire rope involves a group of strands placed helically around a 

core composed of either a strand or another rope. Both of these bridge strand types are usually 

prestretched by the manufacturer to remove the permanent “constructional stretch” caused by 

lengthening of the strand lay due to adjustment of the wires into a denser cross-section under 

load. The prestretching is achieved by subjecting the strand to a load up to 55 % of the breaking 

strength for a sufficient length of time to permit the adjustment of the wires to that load. As a 

result, under working loads, the elongation of the strand is effectively elastic and can be 

calculated using the elastic moduli given in Table 2. These moduli are reduced relative to that of 

the base material due to the helical geometry of the wires and the zinc coating. The wires tend to 

straighten when subjected to tension. Also, the strength is reduced due to the helical geometry. 

The breaking strengths of Grade 1 structural strand and wire rope with Class A zinc coating are 

approximately 190 to 200 ksi based on the gross metallic area. The breaking strength of Grade 2 

structural strand with Class A zinc coating is approximately Fu = 220 to 230 ksi based on the 

gross metallic area of the strand.  

 

Table 2  Effective minimum elastic moduli of prestretched structural strand and structural 

rope (ASTM 2004; ASTM 1998).  

 

 

Type Nominal Diameter (in) 
Minimum Modulus (ksi) 

Class A Coating
*
  

Strand ½ to 2 
9
/16 24,000 

 2 
5
/8 and larger 23,000 

Rope 3
/8 to 4 20,000  

* 
For Class B or Class C weight of zinc-coated outer wires, reduce minimum modulus by 1000 ksi 

 

Seven-wire prestressing strand has a straight core wire surrounded by a single layer of six 

helically-placed outer wires with a uniform pitch of not less than 12 and not more than 16 times 

the nominal diameter of the strand. This pitch is longer than that of bridge strand such that the 

elastic stiffness is essentially the same as that of the base material. AASHTO (2014) specifies E 

= 28,500 ksi for seven-wire strand. ASTM 416 covers two types of seven-wire strand: low-

relaxation and stress-relieved (normal relaxation). AASHTO (2014) and ASTM 416 both state 

that low-relaxation strand shall be regarded as the standard type, and that stress-relieved (normal-

relaxation) strand will not be furnished unless specifically ordered, or by arrangement between 

the purchaser and supplier. Low-relaxation strand is produced by a combined process of low-

temperature heat treatment and high tension. Seven-wire strand is produced with nominal 
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breaking or ultimate strengths Fu of both 250 ksi and 270 ksi on the nominal area of the strand 

(smaller than the area based on the nominal diameter). The minimum yield strength Fy of low 

relaxation strand is 90 % of Fu, measured at 1% extension under load. Both seven-wire and 

bridge strand exhibit a gradual (non-sharp) yield response. 

 

AASHTO (2014) does not specify a procedure for design of bridge strands or cables composed 

of seven-wire strand. In past practice, bridge strands were checked against working loads using a 

factor of safety of 3 to 4 with respect to their breaking strength (Podolny and Scalzi 1986, Wright 

and Bunner 2006). Cables composed of seven-wire strand were commonly checked against 

working loads using a factor of safety of 2 with respect to their minimum yield strength (Podolny 

and Scalzi 1986). Chapter 5 of AASHTO (2014) addresses the use of prestressing in concrete 

structures, but does not specifically address the use of prestressing steel for composite or 

noncomposite steel construction. The design calculations for prestressed steel structures may be 

based largely on the same fundamental principles of equilibrium and strain compatibility utilized 

within the AASHTO concrete provisions, combined with the steel design provisions of Chapter 6 

for consideration of the stability of the structural steel elements. However, prestress losses due to 

elastic shortening and long-term shrinkage and creep of the concrete are in general different in 

structural steel applications. The reader is referred to Troitsky (1990) for detailed discussion of 

the design of prestressed steel bridges.  

 

5.2  Compression Members 

 

5.2.1 Base Column Strength Equations 

 

AASHTO (2014) and AISC (2010) both effectively use the following single column-curve 

equations to characterize the nominal axial resistance of all types of steel and composite steel-

concrete members to concentrically-applied axial compression: 
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                       (AASHTO 6.9.4.1-1 & 6.9.5.1-1, AISC E3-1 & E3-2, E7-1 & E7-2 & I2-2)
 
 

 

(the number for equations specified by AISC (2005) is preceded by the word “AISC” followed 

by the equation number).  Pn = 0.877 Pe for Pe/Po < 0.44, where Pe is the elastic or effective 

elastic member buckling load, which can be calculated by the famous expression: 
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 (AASHTO 6.9.4.1.2-1, AISC E3-4) 

 

for flexural buckling about either the major or minor principal axis of the cross-section, and Po is 

the effective cross-section or stub-column yield strength. That is, Po is the strength in the limit of 

zero length (KL = 0). For a homogeneous prismatic steel member in which none of the cross-

section plates are classified as slender, Po is the full yield capacity given by: 
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Po = Py = Fy Ag (5.2.1-3) 

 

Equations (1, 2, and 3) are expressed in various specific forms in the AASHTO and AISC 

Specifications. The format shown here allows for a unified discussion of all the different column 

strength calculations. For flexural buckling of a homogeneous prismatic member, the square root 

of Po/Pe is the member normalized slenderness parameter 

 

1 yo

e

FP KL

P r E

 
  
 

 (5.2.1-4) 

 (AASHTO 6.9.5.1-3) 

 

The other terms in Equations (1) through (4) are defined as follows: 

 

Ag = gross area of the cross-section,  

 

E = steel elastic modulus, taken equal to 29,000 ksi, 

 

Fy = column minimum specified yield strength, 

 

I = moment of inertia of the cross-section about the principal axis normal to the plane of 

buckling, 

 

r = radius of gyration about the principal axis normal to the plane of bucking = (I/Ag)
0.5

, 

 

K 

 

= 

 

effective length factor in the plane of buckling.  

 

Equations (1) and (2) represent the nominal inelastic and elastic column buckling resistances 

respectively, as illustrated in Figure 47 in terms of both KL/r and (Po/Pe)
0.5

. Although these 

equations are often considered solely in terms of the column effective slenderness ratio KL/r, the 

above general form of these equations is utilized in AASHTO (2014) and in AISC (2010) to 

define the resistance of all types of steel and composite steel concrete columns, including cases 

where Pe corresponds to limit states other than flexural buckling. Furthermore, this form is 

applied in Kaehler et al. (2011) to quantify the resistance of columns having general tapered 

and/or stepped cross-sections subjected to uniform or nonuniform axial compression. Equations 

(1 and 2) account in a broad fashion for the influence of residual stresses and geometric 

imperfections (out-of-straightness and out-of-plumbness) on the column resistance. They provide 

a close fit to SSRC column curve 2P, which is based on a mean initial out-of-straightness of 

1/1470 of the equivalent simply-supported column length KL (Ziemian 2010) (see Figure 47).  
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Figure 47  AASHTO (2014) and AISC (2010) column strength curve in terms of both KL/r 

and  (Po/Pe)
0.5

 versus the SSRC multiple column curves 1P, 2P and 3P (Galambos 1998) and 

the theoretical elastic buckling strength, steel columns with Fy = 50 ksi 

 

Generally, there are significant differences in the mean column resistances for various column 

types. This is evidenced by the differences between SSRC curves 1P, 2P and 3P in Figure 47. 

Table 3 summarizes the recommended usage of these multiple column curves for a range of steel 

column cross-sections. One can observe that the normalized column resistances are larger on 

average for lightweight sections, larger yield strengths and buckling about the major-axis of 

bending for I-shapes. They tend to be smaller for heavy sections, low yield strengths, and 

buckling about the minor-axis of bending for I-shapes. Column curve 3P applies only to heavy 

W-shapes with Fy < 50 ksi and welded H-shapes built-up from universal mill plate with Fy < 50 

ksi for major-axis buckling and Fy < 60 ksi for minor-axis buckling. Welded built-up shapes are 

no longer manufactured from universal mill plates; furthermore, the minimum yield strength is 

usually 50 ksi or larger in new construction. Therefore, the resistances of all practical columns in 

new construction are best fit by column curves 1P and 2P, with 2P being the appropriate curve 

for most of the column types. AASHTO (2014) applies a resistance factor of c = 0.9 to Eqs. 

(5.2.1-1) for all types of steel and composite steel-concrete columns, versus  = 0.75 for concrete 

columns. This is consistent with the use of the single column curve Eqs. (5.2.1-1) and the use of 

the same resistance factor for steel and composite steel-concrete columns in AISC (1999). AISC 

(2005) and (2010) use a substantially smaller c factor in their provisions for composite steel-

concrete columns along with a more accurate but more liberal calculation of the nominal 

resistance Pn. AISC (2005) and (2010) also have increased their c factor slightly for steel 

columns in recognition of the fact that column curve 3P is no longer applicable for new steel 

construction. 

 

 



 64 

 

 

Table 3  Recommended SSRC column curves for various types of steel cross-sections, 

adapted from (Ziemian 2010). 

 

Cross-section type 
Axis of 

Bending 

Specified Minimum Yield Strength Fy 

(ksi) 

< 36      
37 to 

49 

50 to 

59 

60 to 

89 
 > 90 

Hot-rolled 

W-shapes 

Light and medium 

Weight sections 

Major 

Minor 

2 

2 

2 

2 

1 

2 

1 

1 

1 

1 

Heavy sections  

(flange thickness > 2 in) 

Major 

Minor 

3 

3 

2 

3 

2 

2 

2 

2 

2 

2 

Welded 

Built-up 

H-shapes 

Flame-cut plates 
Major 

Minor 

2 

2 

2 

2 

2 

2 

1 

2 

1 

1 

Universal mill plates 
Major 

Minor 

3 

3 

3 

3 

2 

3 

2 

2 

2 

2 

Welded  

Box Shapes 

Flame-cut and  

Universal mill plates 

Major 

Minor 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

Square and  

Rect. Tubes 

Cold-formed 
Major 

Minor 

N/A 

N/A 

2 

2 

2 

2 

2 

2 

2 

2 

Hot-formed and cold-

formed heat-treated 

Major 

Minor 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Circular 

Tubes 

Cold-formed N/A 2 2 2 2 2 

Hot-formed N/A 1 1 1 1 1 

  
 

5.2.2 Flexural Buckling and Column Effective Length 

 

The effective length factor K accounts for the influence of the column end conditions on the 

flexural buckling resistance, including interactions with other members in the structure. Table 4, 

from AISC (2010), AASHTO (2014) and Ziemian (2010), summarizes the theoretical K values 

for cases in which the rotational and/or translational restraints at the ends of a column are either 

full (i.e., effectively rigid compared to the column stiffness) or nonexistent. Recommended de-

sign values are also provided. These values are simple modifications of the ideal values, taking 

into account the fact that the physical end translations and rotations can never be perfectly fixed 

or perfectly unrestrained.  
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Table 4  Approximate values of effective length factor K for cases where the rotational 

and/or translational end restraints are either nominally fixed or nonexistent (reprinted 

with permission from AISC (2010)). 

 

 
 

In numerous other cases, K values are often specified based on established practice. For instance, 

Ziemian (2010) recommends the use of K = 0.85 for in-plane buckling of web members in bridge 

trusses. This is because the position of live load that produces the maximum force a given web 

member typically causes less than the maximum force in the adjacent members. Therefore, the 

adjacent members are able to provide some rotational restraint. In lieu of analysis, AASHTO 

(2014) allows a more liberal value of K = 0.75 for any truss or frame member that has bolted or 

welded end connections and is braced against lateral translation at its ends, with the exception of 

single angle members where K = 1.0 is suggested. One can observe from Table 4 that K = 0.75 

implies no translation and nearly rigid end rotational restraints. Thus, it would appear that this 

assumption is appropriate only for relatively light web members compared to the truss chords. 

Ziemian (2010) suggests K = 0.9 for in-plane buckling of an interior panel of the compression 

chord of a constant depth truss, when the chord has the same cross-section along its entire length. 

In the out-of-plane direction, Ziemian (2010) suggests K = 0.7 and 0.8 for the web compression 

members of a through truss when a substantial knee brace is provided in the cross-frames at both 

chords and at only one chord respectively. When the cross-frames depend only on their flexural 

stiffness and frame action to resist sidesway, K is greater than one for the web compression 

members in the out-of-plane direction. Also, in these cases, the compression chord has a K 

greater than one. The K factor is greater than one in general for the compression chord of pony 

trusses and half-through trusses. The reader is referred to Ziemian (2010) and Johnston (1976) 

for further discussion of appropriate K calculations in these cases.  

 

In many situations where rotational restraint exists at the ends of a single bridge column or at the 

ends of the columns in a bridge frame, e.g. pier columns integral with bridge girders, the 
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traditional sidesway inhibited or sidesway uninhibited alignment charts (AASHTO 2010; AISC 

2010; Kavanagh 1962) provide acceptable solutions for K. However, it is essential to recognize 

that the alignment charts are based on idealized assumptions that in certain cases make their 

application invalid. The commentary to Appendix 7 of AISC (2010) discusses these assumptions 

in detail and provides a number of modifications to the alignment chart procedures that extend 

their range of applicability. AASHTO (2014) Article C4.6.2.5 gives closed form equations that 

provide a close fit to the base sidesway inhibited and sidesway uninhibited alignment charts. The 

AISC (2010) modifications also must be applied in general in the use of these equations.  

 

As noted previously in Section 2.5 of this module, AASHTO (2014) Article 4.5.3.2.2c provides 

suggested effective length factors for in-plane buckling of arches. These values range from 0.70 

for a fixed arch with a small rise-to-span ratio to 1.16 for two- or three-hinged arches with a 

large rise-to-span ratio. These values are applied to one-half of the total arc length of the arch rib. 

For checking stability in the out-of-plane direction, the effective length KL may be taken as the 

distance between the rib bracing points when a lateral bracing system of adequate stiffness is 

provided. However, special consideration of arch-end portals is generally necessary. Refined 

eigenvalue buckling analysis is the simplest way to check the out-of-plane stability in these 

cases. The reader is referred to the discussion in Section 5.2.6 of this module for the handling of 

nonuniform compression and/or nonuniform cross-section properties along the length of an arch.  

 

In trusses, frames and arches where a refined analysis is employed to assess the stability, it is 

simpler and more convenient to work directly with the member elastic buckling load, Pe, than 

back-calculate an equivalent pinned-ended length KL. In this case, Pe in Eqs. (5.2.1-1) is simply 

the axial load in a given member at incipient elastic buckling of the structure or subassembly 

considered in the buckling analysis. The use of Pe in Eqs. (5.2.1-1) is also essential for the 

application of these equations in determining the torsional and torsional-flexural buckling 

resistances of certain types of members (see Section 5.2.3 of this module). Also, all of the above 

K factor considerations pertain solely to flexural buckling. In several of the following sections, 

KL is taken as an “equivalent length” accounting for attributes other than just the flexural 

response.  

 

5.2.3 Column Torsional and Torsional-Flexural Buckling  

 

AASHTO (2014) Article C6.9.4.1.3 and AISC (2010) Section E4 give the applicable resistance 

equations for members that are susceptible to torsional or torsional-flexural buckling. These 

include some singly-symmetric members such as double angles and tees, and built-up members 

such as columns with cruciform cross-sections and/or with relatively thin cross-section plate 

elements. As noted in the previous section, all the AISC (2010) and AASHTO (2014) column 

resistance calculations use Eqs. (5.2.1-1); however, the calculation of Pe is different than in the 

previous section.  

 

5.2.3.1 Torsional buckling of doubly-symmetric cross-sections 

 

Doubly-symmetric cross-section members that are relatively weak in torsion, e.g., cruciform 

columns or columns that are braced but are not sufficiently restrained against twisting at a 

number of their brace points, can fail by a buckling mode involving a pure twisting about the 
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axis of the member (see Figure 48). In these cases, the elastic torsional buckling load may be 

expressed as  
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 (AASHTO 6.9.4.1.3-1, AISC E4-4) 

 

where  

 

Cw  = warping constant for the cross-section, equal to zero for a cruciform section,  

 

KLz  = effective length for torsional buckling,  

 

G  = steel shear modulus, taken as 11,200 ksi,  

 

J  = St. Venant torsional constant for the cross-section, and 

 

Ix and Iy  = moments of inertia about the major and minor principal axes of bending   

respectively. 

  
A

A

P P

Section A-A



 
 

Figure 48  Torsional buckling of an I-section member. 

 

The effective length for torsional buckling, KLz, is usually taken as the distance between 

locations where the member is restrained against twisting. For the case of a cantilever column 

fully restrained against twisting and warping at one end and with the other end free, KLz = 2L. 

For a member where twisting and warping are fully restrained at each of its ends, KLz = 0.5L. 

(Note that the notation “KLz” is a unification of the different symbols used for these terms in 

AISC (2010) and AASHTO (2014); in this module, the subscripts x, y, or z are placed at the end 

of the general effective length symbol, KL¸ to indicate the effective lengths for flexural buckling 

about the major (x) or minor (y) principal axes of the section, or torsional buckling about the 

longitudinal z axis of the member.)  

 

Doubly-symmetric compression members can fail either by flexural buckling about one of the 

cross-section principal axes, or by torsional buckling. However, torsional buckling rarely 

governs except for members such as cruciforms. Torsional buckling never needs to be considered 

for doubly-symmetric I-section members that satisfy the AASHTO Article 6.10.2 proportion 

limits, unless KLz is significantly larger than the weak-axis flexural buckling effective length, 

KLy. Generally, Pnz/Pny (the ratio of the nominal column strengths using Eq. (1) with KLy rather 

than Eq. (3) for calculation of Pe) is smaller for smaller D/bf, larger bf/tf, larger D/tw and larger 
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Po/Ag. Based on D/bf = 1, bf/tf = 24, D/tw =192 (corresponding to tf/tw = 8) and Po/Ag = 100 ksi as 

the worst-case combined cross-section parameters, the smallest value of Pnz/Pny is still only 0.974 

at KLy/ry = 37, assuming KLz = KLy. That is, torsional buckling leads to a maximum reduction of 

only 2.6 percent for all practical doubly-symmetric I-shapes. The consideration of end-restraint 

effects (if they are accounted for at all) in the calculation of the column buckling loads is not 

anywhere near this precise. Also, Pnz/Pny increases rapidly with increases in D/bf. 

 

5.2.3.2 Flexural or torsional-flexural buckling of singly-symmetric cross-sections 

 

Compression members with singly-symmetric cross-sections, where the y-axis is taken as the 

axis of symmetry, either can fail by flexural buckling about the x-axis or by torsion combined 

with flexure about the y-axis. The elastic torsional-flexural buckling load for these types of 

members is given by the expression 
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 (AASHTO 6.9.4.1.3-3, AISC E4-10) 

 

KLy = effective length for flexural buckling about the y-axis (the axis of symmetry of the 

cross-section), 

 

Cw  = cross-section warping constant, equal to zero for cross-sections where the 

component plates are all joined at a single common point, e.g., tee sections, 

 

yo  = distance along the y-axis between the shear center and the cross-section centroid, 

 

or  = polar radius of gyration about the shear center 
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   (AASHTO 6.9.4.1.3-6, AISC E4-11) 
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The governing column strength, Pn, is obtained by substituting the smaller value of PeTF (which 

is always smaller than Pey) or Pex (flexural buckling about the x-axis) into Eqs. (5.2.1-1). 

 

As noted above, PeTF
 
is generally smaller than Pey. However, the flanges of singly-symmetric I-

sections often have equal widths (only the flange thicknesses differ). Therefore, for these types 

of member, yo tends to be relatively small and the influence of the smaller PeTF on Pn is always 

less than 4 % as long as 

 

KLz < KLy  and  0.67 < tf1/tf2 < 1.5 

 

where tf1 and tf2 are the flange thicknesses. For I-section members with equal-width flanges, the 

largest reduction in Pn due to the smaller PeTF occurs for bf/tf = 24, D/bf = 6, D/tw = 150, Po/Ag = 

100 ksi, KLy/ry = 114 and KLz = KLy (smaller D/tw gives a larger reduction for this case, but 

causes tf/tw < 1). Therefore, if the above limit is satisfied, torsional-flexural buckling never needs 

to be considered for practical I-section members with equal-width flanges and KLz < KLy.  

 

Interestingly, the reductions in the torsional-flexural buckling resistance for I-section members 

with unequal width flanges are significant in many practical cases even when there are rather 

small differences in the flange widths. This is because the lateral moment of inertia of the flanges 

varies with bf
3
, and hence only minor changes in the relative flange widths result in a significant 

shift in the cross-section shear center relative to the centroid. The shift in the cross-section shear 

center is similar to the shift in the centroid due to changes in the flange thickness; however, the 

shift in the shear center is significantly different than the shift in the centroid due to changes in 

the flange width. Therefore, there does not appear to be any simple way to exclude the need to 

consider torsional-flexural buckling for any I-section members with unequal flange widths. 

 

5.2.3.3 Torsional-flexural buckling of general unsymmetric cross-sections 

 

Lastly, for members with no cross-section axis of symmetry, the failure mode under axial 

compression always involves torsion combined with flexure about both the x and y axes. In this 

case, Pe is the smallest root of the following cubic equation 
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  (AASHTO 6.9.4.1.3-7, AISC E4-6) 
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Pey is as defined in Eq. (3),  
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 (AASHTO 6.9.4.1.3-9, AISC E4-11) 

And 

 

xo, yo = x and y coordinates of the shear center with respect to the cross-section centroid. 

 

As noted previously, once the elastic buckling load, Pe, is calculated, it is substituted into Eqs. 

(5.2.1-1) to determine the nominal elastic or inelastic column buckling resistance.  

 

5.2.3.4 Special handling of double-angles and tees with non-slender elements in AISC 

(2010) 

 

For double-angle and tee-section compression members in which none of the cross-section 

elements are classified as slender, AISC (2010) specifies a modified approach that, in some 

cases, gives a slightly more liberal estimate of the capacity. For these member types, Pez is 

calculated as 
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 (AISC E4-3) 

 

which is simply Eq. (4) with Cw = 0. Secondly, Pny is calculated using Eqs. (5.2.1-1) based on the 

flexural buckling mode about the y-axis. Finally, the nominal column strength for torsional-

flexural buckling is determined by substituting Pny directly into Eq. (2) in place of Pey. This 

gives: 
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 (AISC E4-2) 

 

The governing column strength is then taken as the smaller value of Pnx (flexural buckling about 

the x-axis) and PnTF (buckling by twisting and combined bending about the y-axis). AISC (2010) 

references Galambos (1991) for justification of the above calculation of the torsional-flexural 

buckling resistance.  

 

The reader should note that all of the previous equations are based on a “mapping” of the 

theoretical elastic buckling resistance, Pe, to the nominal column buckling resistance, Pn, using 

Eqs. (5.2.1-1). Equation (14) deviates from this pattern by assuming that the torsional buckling 

contribution to the resistance, Pnz, is always elastic for these member types (i.e., Pnz = Pez in Eq. 

(14)). Interestingly, Eq. (14) does not necessarily give a larger calculated resistance PnTF than the 

above direct “mapping” of PeTF to Pn using Eqs. (5.2.1-1). This is due to subtle aspects of the 

algebra associated with the different equations and the conversion of the elastic buckling load to 

the inelastic column resistance.  
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AASHTO (2014) does not specify Eqs. (13) and (14) for the above member types. Rather, it uses 

the general mapping of the elastic buckling resistance to the nominal buckling resistance given 

by Eqs. (5.2.1-1) for all types of steel and composite steel concrete members. Given the limited 

test data on which Eqs. (13) and (14) are based, it was felt that the use of this separate set of 

equations was not justified.  

 

The commentary to Chapter E of AISC (2005) (Table C-E4.2) indicates that torsional-flexural 

buckling can be neglected in tee-section members having non-slender cross-section elements 

when bf/d > 0.5 and tf/tw > 1.10 for rolled tees and 1.25 for built-up tees. Interestingly, these 

limits remove the need to consider torsional-flexural buckling for all ASTM A6 WT, ST and MT 

sections as long as the stem is not slender under uniform axial compression. However, a simple 

plotting of the above equations indicates that this recommendation is not well founded.  The ratio 

of PnTF/Pny for tees with nonslender cross-section elements and KLz = KLy, calculated using Eq. 

(14), can be as small as 0.75 for short tee-section members. This ratio is smaller than 0.90 for 

many tee section members at intermediate to long unbraced lengths. The AISC (2010) 

commentary no longer includes this table in view of the fact that PnTF generally should be 

calculated for tee-section members. This is consistent with the findings for unequal-width flange 

I-section members discussed previously in Section 5.2.3.2 of this module.  

 

5.2.3.5 Special handling of single angle compression members in AASHTO (2014) and 

AISC (2010) 

 

Single angle compression members are used extensively as cross-frame and lateral-bracing 

members in steel bridge construction. AISC (2010) and AASHTO (2014) provide highly 

simplified provisions for design of specific types of single angle web members subjected to axial 

compression. These provisions define an equivalent slenderness (KL/r) for use with Eqs. (5.2.1-

1) and (5.2.1-2) applicable when: 

 

1. The end connections are to a single leg,  

 

2. The member is loaded through the same leg at each of its ends,  

 

3. The end connections are welded or use a minimum of two bolts,  

 

4. The member is not subjected to any transverse loads, and  

 

5. If used as web members in trusses, all adjacent web members are attached to the same 

side of the gusset plate or chord.  

 

For these types of single-angle members, the equivalent KL/r accounts for the effects of end 

eccentricities, and the member may be proportioned using Eqs. (5.2.1-1) and (5.2.1-2) as if it 

were a concentrically compressed strut subjected solely to flexural buckling. The equivalent KL/r 

expressions also presume significant end rotational restraint about the Y-axis shown in Figure 49, 

where the Y-axis is perpendicular to the connected leg and to the gusset or the plate component 

of another member to which the angle is connected. This leads to the angle member tending to 

buckle primarily about the X-axis. As such, r is taken as the rX for the angle for bending about an 
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axis parallel to the connected leg.  It is not taken as the minimum r = rz about the angle minor 

principal axis. In addition, it should be noted that a capital X is used here because, for an unequal 

leg angle, the X axis can be either the x or y axis of the angle shown in property tables, depending 

on which of the legs is the connected one.   

 

XX

Y

Y

Gusset Plate

X-axis is parallel to 

plane of gusset

 
Figure 49  Single-angle cross-section and definition of geometric axes utilized by the AISC 

(2010) and AASHTO (2014) equivalent KL/r expressions. 

 

 

 
 

Figure 50  Test end conditions associated with the recommended equivalent KL/r equations 

for single angle struts. 

 

AISC (2010) provides two sets of equations for the equivalent KL/r, one based on the assumption 

of significant rotational restraint about the X and Y axes in Figure 49 and the other based on tests 

having close to the knife-edge end conditions shown in Figure 50 (but with less than rigid Y-axis 

restraint and considering some minor X-axis restraint). The more optimistic equations, which 

assume substantial X- and Y-axis end restraint, are essentially equivalent to the ASCE 10-97 

(ASCE 2000) equations for equal-leg angles in latticed transmission towers. These equations are 

classified by AISC (2010) as being applicable for “web members of box or space trusses.” The 

less optimistic equations are classified by AISC (2010) as being applicable for “web members of 

planar trusses.” Based on the data presented by Lutz (2006), these equations are considered 

applicable for all types of single angles commonly employed in bridge cross-frames and lateral 

bracing systems.  These equations are as follows.  
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For equal-leg angles, and unequal-leg angles connected through the longer leg, 
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(AASHTO 6.9.4.4-2, AISC E5-2) 

where L is the length of the member between the end-connection work points. It is intended that 

the design should not be used in any case where the maximum value of KL/r in Eq. (15b) is 

greater than 200. 

For unequal-leg angles with the ratio of the leg widths less than 1.7, connected through the 

shorter leg, 
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(AASHTO 6.9.4.4-4, AISC E5-2) 

where b and bs are the widths of the longer and shorter legs respectively, and as in Eq. (15b), it 

is intended that the design should not be used if the equivalent KL/r is greater than 200 in Eq. 

(16b).  

It is important to emphasize in the above that rX is the radius of gyration about the angle 

geometric axis parallel to the connected leg. For an unequal-leg angle connected through the 

longer leg, rX is actually the smaller r value about the angle’s geometric axes, typically listed as 

ry in section property tables. Equations (16) account for the fact that the strength is enhanced by 

using the longer leg as the outstanding leg, but also recognize that this tends to force the actual 

buckling axis to be closer to the z-axis of the angle (Lutz 2006). The limit of b/bs < 1.7 is based 

on the limits of the available experimental tests.  

Lutz (2006) obtains a mean professional bias factor for the above equations of Pn/Pmax = 0.998 

with a coefficient of variation of 0.109 relative to single-angle tests approximating the knife-edge 

end conditions shown in Figure 50. In addition, Lutz (2006) shows a representative equal-leg 

angle example in which the above equations give results close to those obtained using the more 

generally applicable approach of treating the single-angle as a beam-column under specific 

conditions. The more general procedure requires the use of Eq. (9), the calculation of moments 
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based on assumed end eccentricities, the calculation of single-angle moment capacities, and 

beam-column interaction checks.  The two approaches are roughly equivalent when: 

 

1. The end eccentricity eX (normal to the X-axis) is taken as Y  + t/2, 

 

2. The end eccentricity eY is taken as the value necessary to theoretically achieve uniform 

stress along the connected leg, 

 

3. The effective length for buckling about the X-axis (parallel to the connected leg) is taken 

with KX = 1.0, and 

 

4. The effective length for buckling about the Y-axis is calculated as KY = 0.65 (Lutz (1992) 

gives a procedure for calculating this effective length factor).   

 

Lutz (2006) also compares the AISC (2010) equations to other equivalent KL/r procedures in 

Eurocode 3 (CEN 1993) and in the British Standard BS5950 (1990). The Eurocode 3 procedure 

gives results that are very close to the AISC space truss equations for L/rX > 60, but is more 

optimistic than the AISC space-truss provisions for smaller L/rX values. The BS5950 equations 

predict larger capacities than the AISC space-truss provisions for L/rX < 120 in Lutz’s equal-leg 

angle example, and predict essentially the same capacities for larger L/rX. The above Eqs. (15) 

fall below the European and British predictions for all ranges of L/rX.  Eq. (15a) gives a result 

that is 21 and 44 percent below these predictions at L/rX = 40.  

 

One of Lutz’s (2006) examples is a single angle strut that requires the use of an equivalent yield 

strength QFy, where Q is the AISC (2010) form factor accounting for local buckling effects (see 

Section 5.2.4 of this module). The AISC Q factor equations are believed to provide adequate 

estimates of the capacity of angles with slender leg elements. ASCE 10-97 (ASCE 2000) applies 

a similar reduction for these types of angles.  

 

The fifth restriction on the equivalent KL/r equations, listed at the beginning of this section, is 

based largely on the test results presented by Woolcock and Kitipornchai (1986). These 

investigators found that single angle web members in trusses have less theoretical capacity when 

they are connected alternately on opposite sides as opposed to connecting the members all on the 

same side of T-section truss chords. This is apparently due to the shear transfer within a Warren-

type truss system with the diagonals in alternating tension and compression, and the additive 

eccentricity effects of compression in one web diagonal with tension in the other adjacent web 

diagonal.  

 

With the exception of “X” bracing in cross-frames or lateral bracing systems, single-angle 

members typically are all connected on the same side at their end connections (NSBA 2006). 

Nevertheless, it is common in some bridge applications to have both diagonals in compression at 

a joint in a Warren truss. This can occur for example when a Warren truss is used for the top 

lateral bracing system in a box girder. In this case, the compression in the two adjacent diagonals 

would cause an additive detrimental eccentric loading effect if both members are connected on 

the same side. That is, depending on the specific loads being transferred at the bracing 

connections, connecting the angles on the same side could be detrimental or beneficial.   
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Upon looking at the fifth restriction more broadly, considering the potential restraints from 

typical single-angle connection details in steel bridge cross-frames and lateral-bracing systems, it 

is suggested that the approximate knife-edge boundary conditions about the X-axis, upon which 

Eqs. (15) and (16) are based, are an acceptable approximation for calculation of the single-angle 

capacities for any configuration of cross-frames or flange level lateral bracing in steel bridge 

applications. The approximate knife-edge boundary conditions are judged typically to be more 

detrimental to the angle member strengths than the physical end conditions for these members. 

 

The special case of “X” bracing systems merits some further discussion. In cases where one 

diagonal is in tension, and if this member has a force of not less than 20 % of the force in the 

compression member, ASCE 10-97 (ASCE 2000) indicates that the cross-over point may be 

considered as a braced point for out-of-plane buckling. It would appear that a similar approach 

might be applied with Eqs. (15) and (16). However, this approach needs validation. If only a 

single bolt is used to connect the angles at the cross-over point, the restraint about the Y-axis 

assumed in Eqs. (15) and (16) may not be present at this point. It is suggested here that Eqs. (15) 

and (16) may be applied conservatively in X-bracing systems by using the full length of the 

diagonal between the end connection work points for L.  

 

El-Tayem and Goel (1986) have studied the X-bracing problem where the compression and 

tension member are equally loaded and the connections are welded. Their research has involved 

both theoretical and experimental investigations. They indicate that the compression diagonal of 

cross-bracing systems made of equal-leg single-angle members may be checked neglecting the 

effect of end eccentricity, using a KL in Eq. (5.2.1-2) equal to 85 % of the half-length of the 

compression diagonal and using the radius of gyration r = rz taken about the minor principal axis 

of the angle cross-section.  

 

5.2.4  Columns with Slender Elements 

 

5.2.4.1 Width-to-thickness limits to prevent local buckling under uniform axial 

compression 

 

Slender cross-section elements are plates that are unable to develop their full nominal yield 

strength in uniform axial compression because of local buckling. The solid curve in Figure 51 

illustrates the general form of the AISC (2010) local buckling strength. For an average applied 

axial stress P/Ag < 2Fy/3, the nominal local buckling resistance is quantified by the classical 

elastic critical stress formula: 
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(AASHTO 6.9.4.2.2-8, 6.9.4.2.2-6, 6.9.4.2.2-4 & 6.9.4.2.2-2, AISC E7-9, E7-15, E7-12 & E7-6) 

 

Where 

 

kc  =  plate local buckling coefficient 

 

  =  Poisson’s ratio for steel (0.3) 
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b/t  =  relevant width-to-thickness ratio. 
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Figure 51  General form of AISC (2010)-AASHTO (2014) nominal strength curve for plate 

local buckling. 

 

AASHTO (2014) and AISC (2010) list the kc values explicitly only for a few plate edge 

conditions. Rather, a kc value is implicit the most of the AASHTO and AISC equations. All the 

explicit and implicit kc values are discussed below, since this allows for a better understanding of 

the underlying assumed behavior.   

 

For plates that are stocky enough to develop applied stress levels larger than 2Fy/3, the local 

buckling resistance is defined by a straight-line inelastic buckling curve between the two anchor 

points A and B. The width-to-thickness ratio corresponding to anchor point B is obtained by 

setting Eq. (1) equal to 2Fy/3 and solving for b/t. This gives 
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For a perfectly flat plate with zero residual stress, Fe > Fy for a width-to-thickness ratio of  

 

/ 0.95 c

y
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However, due to residual stresses and geometric imperfections, a smaller value of b/t is required 

nominally to develop an average applied stress of P/Ag = Fn = Fy. The AISC (2010) and 

AASHTO (2014) provisions assume that a plate can develop its nominal full yield strength in 

uniform axial compression when  
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 (AASHTO 6.9.4.2.1-1 & 6.9.4.2.1-2, AISC Table B4.1) 

 

which corresponds to Fe > 2.20 Fy. That is, the abscissa of anchor point A is given by Eq. (4) 

and the ordinate is Fn = Fy. Equation (4) is the same form as Eq. (6.9.4.2-2) in the AASHTO 

Specification, which applies to flanges of built-up I-sections. AASHTO uses this general form 

for these element types, but defines another parameter k = 0.64 ck  in its Eq. (6.9.4.2-1) to 

address all other cross-section elements. Equation (4) also is identical to the formula for the 

maximum b/t at which the AISI (2001) Specification for Design of Cold-Formed Steel Structural 

Members assumes that a cross-section plate element can develop its full yield strength, Fy b t (see 

AISI (2001) Eqs. (B2.1-1) & (B2.1-4)).  

 

The AASHTO (2014) kc values corresponding to Anchor Point A are summarized in Table 5 and 

Table 6 along with the definitions of b. These values and definitions are based on AASHTO 

(2014) Article 6.9.4.2. AASHTO (2014) has adopted the AISC terminology of referring to plates 

supported along one longitudinal edge as “unstiffened” and plates supported along two 

longitudinal edges as “stiffened.” The same values and definitions are utilized in AISC (2010) 

with the exception that AISC (2010) uses:  

 

(1) kc = 5.4 for rectangular box sections with unequal thickness plates (Case 8 in Table B4.1a of 

AISC (2010)) and kc = 4.8 for boxes of uniform thickness (Case 6 in Table B4.1a), compared to 

kc = 4.8 for box section flanges (Case 5 of Table 6) and kc = 5.4 for webs (Case 6 of Table 6).  

 

(2) kc = 5.4 for flange cover plates (Case 7 of AISC Table B4.1a and kc = 4.8 for other cover 

plates (Case 8 of Table B4.1a) compared to kc = 4.8 for non-perforated cover plates (Case 5 of 

Table 6) and 8.4 for perforated cover plates (Case 8 of Table 6).  

 

 (3) kc = 4.8 for the walls of rectangular tube sections (Case 6 of AISC Table B4.1a), but with b 

defined as the clear distance between the adjacent plates or the distance between the edge 

support minus the inside corner radius on each side, compared to kc = 7.1 (Case 8 of Table 6) but 

with b defined as the full width of the face).  
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Table 5  AASHTO (2014) values for the plate local buckling coefficient, kc, plates supported 

along one edge (defined as “unstiffened” elements). 

 

Case Plate Description kc b 

1 Flanges of built-up I-sections 
wtD //4 < 

0.76 

> 0.35 

 Half flange width 

2 

Flanges of rolled I-, tee and 

channel sections;  

Plates projecting from rolled I-

sections;  

Outstanding legs of pairs of 

angles in continuous contact  

0.76 

 Half-flange width of rolled I-sections 

and tees 

 Full flange width of channels 

 Distance between free edge and first 

line of bolts or welds in plates 

 Full width of an outstanding leg for 

pairs of angles in continuous contact 

3 Stems of rolled tee sections 1.38  Full depth of tee 

4 All other projecting elements 0.50 

 Full width of outstanding leg for single 

angles or double angles with separators 

 Full projecting width for other cases 

  
 

Table 6  AASHTO (2014) values for the plate local buckling coefficient, kc, plates supported 

along two edges (defined as “stiffened” elements). 

 

Case Plate Description kc b 

5 

Box section flanges;  

Non-perforated cover 

plates 

4.8 

 For box section flanges, clear distance between the 

webs  

 For cover plates, distance between lines of welds or 

fasteners  

6 
Webs and other plate 

elements 
5.4 

 Clear distance between flanges minus fillet radius for 

webs of rolled I-sections 

 Clear distance between edge supports for all other case 

7 Perforated cover plates 8.4  Clear distance between edge supports 

8 
Walls of rectangular 

tubes 
7.1  Width of face 

  
The use of kc = 5.4 for box sections with unequal thickness plates in AISC (2010) appears to be 

an oversight. This value is considered acceptable for checking typical thinner web plates in 

closed steel box sections. However, a smaller kc value is appropriate for checking the thicker 

flange plates. The flange plates provide rotational restraint to the edges of the web plates, but 

conversely, the web plates cannot possibly also restrain the edges of the flange plates. The 

smaller AISC values of kc = 5.4 or 4.8 for perforated cover plates is  a conservative 

approximation. The larger value of 8.4 for perforated cover plates in AASHTO (2014) is 

consistent with AISC (1999) and is based on the use of the smallest net area at the holes rather 

than the gross area Ag in calculating the column resistance. The smaller value of kc = 4.8 for the 

walls of rectangular tube sections is consistent with the AASHTO (2014) Case 5 provisions in 
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Table 6 for box section flanges. The larger value of kc = 7.1 for tubes in Case 8 is an 

approximation tied to the simpler definition of b as the full width of the face of the tube. 

 

It is informative to compare the nominal kc values in Table 5 against the theoretical minimum kc 

values for elastic plate buckling shown in Figure 52. One can observe from the first case in Table 

5 that the nominal kc is 0.35 for flanges of built-up I-sections with a web width-to-thickness D/tw 

> 131. This value is smaller than the theoretical kc of 0.425 for s.s. (simply-supported) - free 

longitudinal edge conditions (case E of Figure 52), indicating that the flanges are assumed to be 

destabilized by the local buckling of the web for these geometries. For D/tw < 28, a kc value of 

0.76 is assumed for the flanges, which is intermediate between the theoretical s.s.-free and fixed-

free values of 0.425 and 1.28. These limits and the transition equation kc = 4/ / wD t  are based on 

the studies by Johnson (1985). The specific AASHTO-AISC equation for kc is a simplification of 

Johnson’s recommendations first introduced in AISC (1989). The value of kc = 0.76 for the 

flanges of rolled I-, tee- and channel-section members is based on traditional AISC practice. 
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Figure 52  Theoretical kc values for elastic plate buckling (adapted from Salmon and 

Johnson (1996)). 

 

AISC (2010) refers to plates supported along only one edge as unstiffened plates. For plates 

supported along two longitudinal edges, defined as stiffened plates in AISC (2010), AASHTO 

(2014) assumes a nominal kc value of 4.8 for box-section flanges and nonperforated cover plates, 

and 5.4 for all other non-perforated plates. These values lie between the theoretical kc of 4.0 for 

s.s.-s.s. and 6.97 for fixed-fixed edges. 

 

One other important slenderness limit addressed in AASHTO (2014) Article 6.9.4.2 and AISC 

(2010) Table B4.1 is the limit for the axial strength of circular tubes not to be influenced by local 

buckling. This limit is 

 

y
F

E

t

D
11.0  (5.2.4-5) 

  (AASHTO 6.9.4.2.1-5,  AISC Table 4.1a) 
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where D is the outside diameter of the tube and t is the tube thickness.  This limit was first used 

in the 1978 AISC Allowable Stress Design Specification. Analytical buckling solutions 

significantly overestimate the physical local buckling resistance of longitudinally compressed 

cylinders due to imperfections in the shape and eccentricities of the load. Therefore, Eq. (5) is 

based on test evidence from Sherman (1976) that local buckling will not occur for applied axial 

stress up to Fy.   

 

5.2.4.2 Compressive resistance of slender-element section members  

 

AASHTO (2014) Article C6.9.4.2.2 addresses the resistance of compression members with 

slender cross-section elements. This article is based predominantly on the corresponding AISC 

(2010) Section E7 provisions. Many beam-type ASTM A6 rolled wide-flange sections (i.e., 

sections with d/bf > 1.7) have slender webs under uniform axial compression. Also, the stems of 

a large number of WT sections and one or both legs of many of the rolled angles are slender by 

the above definitions, i.e., b/t > r from Eq. (4). Welded I- and box-girders practically always 

have webs that are slender under uniform axial compression. The Engineer should note, with the 

exception of the provisions for filled composite-section members in AISC (2010), cross-section 

components are classified either as slender or non-slender under uniform axial compression in 

AASHTO (2014) and AISC (2010). There are no compactness requirements for uniform axial 

compression. Compactness requirements apply only to member flexural resistances, where the 

flange and web elements need to withstand larger inelastic strains for local buckling not to 

influence the nominal strength. AISC (2010) has recently clarified this consideration by splitting 

its Table B4.1 into two separate Table 5 and Table 6. The different approach to classification of 

filled composite-section members in AISC (2010) is addressed subsequently in Section 5.2.7 of 

this module.  

 

When a steel cross-section contains slender elements, the AASHTO and AISC column 

resistances are calculated in the context of Eqs. (5.2.1-1) by using a reduced equivalent yield 

capacity Po = QPy, where Q < 1 is referred to as the cross-section form factor. The AISC 

Specifications have utilized this approach to determine the strength of columns with slender 

cross-section elements since AISC (1969), which emulated the 1968 AISI Specification (AISI 

1968). Prior to 1969, AISC used the more conservative practice of disregarding any portion of 

the plate width that exceeded the corresponding r limit.  

 

In calculating the reduction factor Q, the AASHTO and AISC Specifications handle unstiffened 

and stiffened cross-section elements differently. Unstiffened elements are assumed to attain their 

limit of resistance when they reach their nominal local buckling strength defined by the solid 

curve in Figure 51. Conversely, the resistance of stiffened elements is based on their inherent 

postbuckling strength illustrated by the dashed curve in this figure. The postbuckling strength is 

quantified using a plate effective width concept. The 1986 AISI Specification (AISI 1986) 

adopted an effective width approach for both stiffened and unstiffened cross-section elements. 

However, subsequent editions of the AISC Specifications have not adopted the updated AISI 

approach. This is partly because the advantages of postbuckling strength are insignificant for all 

but highly slender elements. Such dimensions are common in cold-formed columns, but are 

rarely encountered in unstiffened elements of fabricated steel structures. Furthermore, the AISI 
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effective width approach generally uses smaller kc values than those listed in Table 5 and Table 

6. This results in more conservative predictions in a number of cases for elements with b/t values 

near the AISC r limits. This is particularly true for the local buckling resistance of tee stems, 

where the AISC provisions count on substantial restraint from the flange in determining Fn (see 

Case 3 of Table 5) and the elastic torsional buckling associated with Eq.(5.2.3-13) is essentially 

the same as the elastic local buckling associated with Eq. (1) (McGuire 1968). Tee sections do 

not appear to have been addressed specifically in the development of the AISI provisions. Also, 

the internal residual stresses are different in cold-formed versus hot-rolled and fabricated steel 

members. 

 

5.2.4.3 Strength reduction Qs for members composed entirely of unstiffened elements  

  

For columns composed entirely of unstiffened elements, AASHTO (2014) and AISC (2010) 

calculate the column equivalent yield capacity Po = QPy by determining Q as  

 

Q = Qs = (Fn)min / Fy  (5.2.4-6) 

 (AASHTO 6.9.4.2.2-1 to 6.9.4.2.2-8, AISC E7-4 to E7-15) 

 

where (Fn)min is the smallest local buckling stress from all of the elements of the cross-section. 

That is, the stub-column or cross-section equivalent yield strength is taken as the average applied 

axial stress at which the most critical unstiffened element reaches its local buckling capacity 

illustrated in Figure 51 (elastic or inelastic, depending on b/t, kc and Fy). Interestingly, the 

implicit kc values for single angles and for stems of tees are different for anchor point B 

compared to the values used for anchor point A in Figure 51. The values for anchor point A are 

shown in Table 5 whereas the values for anchor point B and the elastic local buckling resistance 

curve shown in Figure 51 are kc = 0.59 and 0.76 for single angle legs and for tee stems 

respectively. The fact that these values are larger than the theoretical kc = 0.425 for s.s. - free 

edge conditions is due to the close coupling between (i.e., the similarity of the buckling modes 

for) local plate buckling and overall member torsional-flexural buckling (governed by Eqs. 

(5.2.3-2) through (5.2.3-12)) for these member types. 

 

 

5.2.4.4 Strength reduction Q = QaQs for members with stiffened elements 

 

The use of an effective width concept for postbuckled stiffened plates was first proposed by von 

Kármán et al. (1932). Winter (1947) subsequently modified von Kármán’s equation to provide a 

transition between the strength of very slender elements and stockier elements shown to be fully 

effective in tests. Additional testing (Winter 1970) led to further modification to the following 

general form utilized in the AISI (1968) Specification, written in a strength format: 
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However, for the specific case of flanges of square and rectangular sections of uniform thickness, 

AISI (1968) used the equation 
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(implicitly, in an allowable stress format), which gives a slightly more liberal estimate of the 

postbuckling strength. These equations give the effective width of the rectangular stress blocks 

be over which the maximum edge stress f can be assumed to act uniformly to produce the same 

total force as the actual stresses acting over the full width of the plate (see Figure 53). The 

average physical stresses in the middle of the plate (averaged through the thickness) are smaller 

due to the postbuckling deformations. Generally, be is larger for smaller values of the edge stress 

f. That is, the buckles are less developed and a larger portion of the plate is effective for smaller 

f. As the axial load is increased and f increases, the plate postbuckling deformations become 

larger, the average stresses within the middle of the plate become smaller relative to the edge 

stress, and be becomes smaller. The largest potential plate postbuckling resistance is obtained 

nominally when the edge stress f reaches Fy.  
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Figure 53  Representative physical average (through thickness) stress distribution across 

the width of a postbuckled stiffened plate (i.e., both edges supported transversely) versus 

idealized equivalent stress distribution acting on the plate effective width be. 
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AISC (1969) adopted Eq. (8) (in an allowable stress format) for flanges of square and rectangular 

sections of uniform thickness. Furthermore, it specified  
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 (5.2.4-9) 

 

for other stiffened elements, which is a further liberalization of Eqs. (7) and (8). This was an 

enhancement intended to obtain a better fit to test results for cases “where appreciable torsional 

restraint is provided, as for example the web of an I-shaped column” (AISC 1969). These 

equations are based implicitly on corresponding kc values similar to those listed in Table 5 and 

Table 6, and E = 29,500 ksi. 

 

The AASHTO (2014) Specification uses the following modified forms of Eqs. (8) and (9): 
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 (AASHTO 6.9.4.2.2-10, AISC E7-18) 

 

for flanges of square and rectangular box sections or uniform thickness, all the plate components 

of square and rectangular hollow structural sections (HSS), and nonperforated cover plates, and 
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 (AASHTO 6.9.4.2.2-11, AISC E7-17) 

 

for all other uniformly compressed slender stiffened elements. The modifications in these 

equations reflect the fact that E is taken as 29,500 ksi in Eqs. (7) through (9), consistent with 

design practice for cold-formed steel, whereas E = 29,000 ksi is used with Eqs. (10) and (11). 

AISC (2010) applies Eq. (10) to the first two categories mentioned above, but implicitly applies 

Eq. (11) to any cover plates.   

 

For calculation of the column strength, the stiffened element edge stress f in the above equations 

is determined fundamentally as  

 

f = Pn / Aeff (5.2.4-12) 

 

where 

 

Aeff = effective area of the stiffened elements plus the gross area of unstiffened elements  

 = Qa Ag = Ag –  (b – be)t 

 

(5.2.4-13) 

Pn = nominal axial capacity of the column, obtained from Eqs. (5.2.1-1) using   

    Po =  QsFyQaAg = QsQa FyAg = Q FyAg  

 

(5.2.4-14) 
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For a stub-column (KL  0), f = Pn / Aeff = Po / Aeff = QsFy QaAg / QaAg = QsFy = (Fn)min, the local 

buckling strength of the most critical unstiffened cross-section element. If none of the 

unstiffened cross-section elements are slender, or if the cross-section does not contain any 

unstiffened elements, f = Fy for this case. However, for a finite length column, Pn is generally 

smaller than Po and thus f is generally smaller than (Fn)min. In this case, a rigorous application of 

the above equations requires iteration since f is a function of Pn via Eq. (12), the stiffened 

element effective width be given by Eq. (10) or (11) is a nonlinear function of f, Qa depends on 

be, Po depends on Qa via Eq. (14), and Pn depends on Po via Eqs. (5.2.1-1). After substituting the 

applicable equations into Eq. (12) and simplifying, one obtains 
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  for Pe ≥ 0.44Po (5.2.4-15) 

 

As noted above, the effective width be is generally smaller for larger values of f. For stiffened 

slender elements other than the plate components of square and rectangular sections of uniform 

thickness, AISC (2010) sets Qs and Qa equal to 1.0 in Eq. (15) to make the calculations non-

iterative. This gives simply 

 

f = Fn(Q = 1) = Pn(Q = 1) / Ag (5.2.4-16) 

 

where Pn(Q = 1) is the value of Pn determined from Eqs. (5.2.1-1) assuming Q = QsQa = 1. For 

members that do not have any slender unstiffened elements, Qs = 1 and the value of f obtained 

from Eq. (16) is generally smaller than that obtained from a rigorous application of Eq. (15). 

This results in a larger (more liberal) estimated value of be than determined iteratively using Eq. 

(15) for f, and thus a larger (more liberal) estimate of the column resistance Pn.  

 

For slender flanges of square and rectangular sections of uniform thickness, AISC (2010) 

specifies the direct use of Eq. (12), which requires an iterative solution. However, AISC suggests 

that f may be taken conservatively as Fy in a user note. The use of Eq. (16) for slender-element 

box sections gives an anomalous prediction in some cases – the calculated Pn increases with 

increasing KL/r (White et al. 2006). Figure 54 shows the result from the AISC (2010) 

calculations for a uniform thickness square box section with b/t = 150 and Fy = 50 ksi, where  Qs 

= 1 (since there are no unstiffened elements). The factor Q = Qa is taken equal to be/b to simplify 

the generation of the curves in this figure, neglecting the difference between b and the out-to-out 

widths of the box. Also, the AISC (2010) results are compared to the AISI (2001) unified 

effective width equations in the figure, but using kc = 4.8 rather than the AISI (2001) kc value of 

4.0. For KL/r < 49 and 64 respectively, the iterative and non-iterative AISC calculations give a 

smaller column resistance Pn than the AISI-based solution. However, for larger slenderness 

values, the AISI-based solution gives smaller column strengths. The AISC solution using f = Fy 

matches more closely with the AISI-based solution.  
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Figure 54  AISC (2005) column resistances versus the resistance obtained using the AISI 

(2001) unified effective width approach, using the larger AISC-AASHTO kc = 4.8 rather 

than the AISI kc = 4.0, uniform-thickness square box section with b/t = 150 and Fy = 50 ksi. 
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Figure 55  Variation of Q (= Qa = be/b) as a function of the column slenderness for the 

uniform-thickness square box section with b/t = 150 and Fy = 50 ksi. 

 

The reason for the smaller AISI-based resistances for larger KL/r can be explained with the help 

of Figure 55. The AISC Q factor approach uses Po = QsFy QaAg (= Fy QaAg for a box section) as 

an equivalent cross-section yield capacity, and then assumes that the value of Pn /Po is given by 

Eqs. (5.2.1-1) for all values of the column slenderness (Po/Pe)
0.5

, or KL/r given by Eq. (5.2.1-4). 

For Pe < 0.44 Po, the elastic buckling equation (Eq. (5.2.1-1b)) governs, and thus the column 

resistance is independent of Po. However, Figure 55 shows that Q from both the iterative and the 

non-iterative AISC procedures is still significantly less than one for the example box column at 

the idealized transition from inelastic to elastic column buckling. That is, local buckling should 

still be having a significant effect on the column resistance at the inelastic-to-elastic buckling 
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transition point in the example, but the Q factor method does not recognize this fact. The AISI-

based solution resolves this anomaly by calculating the column resistance as  

 

Pn = Fn Aeff (5.2.4-17) 

 (AISI C4-1) 

 

where Fn is the average compressive axial stress Pn/Ag obtained from Eqs. (5.2.1-1), without 

accounting for local buckling effects, and Aeff is the total effective area of the stiffened and 

unstiffened cross-section elements. (AISI (2001) equation numbers are preceded by the word 

“AISI” followed by the equation number.) The AISI-based Aeff is significantly less than Ag at the 

larger KL/r values in Figure 54 and Figure 55.  

 

The differences between the AISC (2010) and the AISI-based solutions are not as large as 

illustrated by Figure 54 for typical I-sections with slender webs and for box-sections with stocker 

plate elements. White et al. (2006) recommend that the AISC (2010) Q factor approach should 

be limited to b/t < 100 for square and rectangular box sections that do not have any longitudinal 

stiffeners. They indicate that the AISC (2010) approach is sufficient for other stiffened plates 

(i.e., plates supported along their two longitudinal edges) without intermediate longitudinal 

stiffeners up to b/t = 150. Also, White et al. (2006) indicate that the simpler use of  f = QsFy in 

Eqs. (10) and (11) provides a more representative calculation of the true resistance in all cases. 

The “bulge” in the column curve obtained by using smaller values of f for longer columns, 

illustrated by the iterative AISC (2010) solution versus the non-iterative f = Fy solution in Figure 

54, does not appear to be justified.  

 

The above discussions apply only to the calculation of the effective widths, be, for stiffened 

elements and the corresponding cross-section form factor, Qa. The calculation of the form factor 

Qs by Eq. (6) for slender unstiffened plate elements is generally adequate to conservative (White 

et al. 2006). Based on the above considerations, it is recommended that f = QsFy be used in all 

cases for calculation of the effective widths in Eqs. (10) and (11). AASHTO (2014) adopts these 

recommendations.  

 

One should note that there is no reduction in the theoretical elastic buckling resistance, Pe, due to 

plate local buckling in either the AISC (2010) Q factor or the AISI (2001) unified effective width 

calculations. Peköz (1987) found that Eq. (17) gives a sufficient approximation of experimental 

column strengths compared to an iterative procedure where Pe is calculated using an effective 

moment of inertia, Ieff, based on the AISI unified plate effective widths, be. Therefore, 

complexities such as shifts in the cross-section effective centroid and shear center with changes 

in be are neglected in both the AISC (2010) and AISI (2001) methods.  

 

5.2.4.5 Axial capacity of hybrid slender-web girders 

 

For girders subjected predominantly to flexural loading, the most economical use of high-

performance steels often involves one or two high-performance steel (HPS) flanges combined 

with a lower strength web. As noted at the beginning of Section 5.2.4 of this module, the webs of 

girders designed predominantly for flexure are practically always classified as slender elements 

under uniform axial compression according to Eq. (4). Although the use of homogeneous 
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sections is most appropriate for members that resist substantial axial compression, hybrid 

slender-web girders are still acceptable when the axial loads are small. In these cases, the axial 

capacity cPn may be calculated by using the largest effective flange yield strength QsFyf for f in 

Eq. (11) to determine the web effective width be, but using the actual web yield strength, Fyw, 

with be in determining Po. This accounts approximately for the level of strain in the web at the 

strength limit under uniform axial compression. In the unusual case that the web has a larger 

yield strength than the flanges, Fyw should be taken equal to Fyf in calculating cPn. If the flanges 

have different yield strengths, the smaller Fyf value should be used for both flanges in 

determining cPn. These are conservative approximations of the complex behavior associated 

with the post-buckled state of the web plate as well as shifts in the effective centroid and shear 

center of the cross-section as the true strength limit is approached.  

 

5.2.4.6 Local buckling criteria for solid-web arch ribs 

 

AASHTO (2014) Article 6.14.4.2 limits the web slenderness of solid web arch ribs with no 

longitudinal stiffeners to  
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 (AASHTO 6.14.4.2-1) 

 

where fa is the maximum axial stress along the length of the box section under the factored loads. 

One can observe that this equation is based on Eq. (4) with Fy replaced by fa and with kc  4.0, 

the theoretical minimum plate buckling coefficient for s.s. - s.s. edge conditions. Web 

longitudinal stiffeners and flange overhangs in solid web arch ribs are limited to  
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 (AASHTO 6.14.4.2-2) 

and  
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 (AASHTO 6.14.4.3-2) 

 

respectively where fa + fb is the maximum combined stress due to axial load plus flexure along 

the length of the box section under the factored loads, including second-order amplification. 

These equations are based on Eq. (4) with Fy replaced by fa + fb/3 or fa + fb (with both stress 

quantities taken as positive values), and with kc = 0.42, which is essentially the coefficient for 

plate buckling under uniform axial compression with s.s. - free edge conditions. The value fb/3 is 

the flexural stress at the depth of the stiffeners for the case of two uniformly-spaced longitudinal 

stiffeners, which is the largest number of web longitudinal stiffeners considered in Article 

6.14.4.2. The width-to-thickness ratio of the rib flanges is limited to  
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 (AASHTO 6.14.4.3-1) 

 

for the width between webs. For fa + fb = Fy, this equation is approximately equal to the AISC 

(2010) compact flange limit for rectangular box sections, which is somewhat more restrictive 

than Eq. (4) with kc  4.0. Flange compactness limits are discussed in Sections 5.3.5 and 5.4.9 of 

this module.  

 

For arch ribs with one or two web longitudinal stiffeners, AASHTO (2014) Article 6.14.4 

increases the coefficient in Eq. (18) from 1.25 to 1.88 and 2.51 respectively, and specifies 

minimum requirements for the moment of inertia of the stiffeners, Is, where Is is taken about an 

axis parallel to the face of the web at the base of the stiffeners. With fa taken equal to Pn/Ag, these 

provisions ensure conservatively that the axial resistance Pn is not affected by local buckling. 

This statement is based on a detailed analysis of worst-case box section members that satisfy the 

AASHTO requirements, using the procedures in AISI (2001).  

 

All of the above limits preclude local buckling in solid web arch ribs at the factored load levels, 

i.e., under the applied stresses fa and fb. Equations (20) and (21) typically, but do not necessarily, 

preclude local buckling of the flanges at the axial and flexural capacity limits cPn and bMn used 

in the AASHTO (2014) axial force-moment interaction equations (see Section 5.6 of this 

module). The web equations do not preclude local buckling of the web under an axial load equal 

to cPn, since fa = Pu/Ag in Eq. (18) can be substantially smaller than cPn/Ag. Also, they do not 

preclude web local buckling under a moment equal to the fMn of a box rib (see Section 5.5.3). 

As such, if Pn and Mn are calculated for an arch rib neglecting local buckling effects, which is the 

intended practice demonstrated by Wright and Bunner (2006), it is suggested that a linear axial-

force moment interaction equation should be used rather than the AASHTO (2014) bilinear 

interaction equation. The AASHTO (2014) - AISC (2010) bilinear interaction curve is based on 

the calculation of Pn using the hypothetical state of uniform axial compression with Pu = Pn.  The 

last paragraph of AASHTO Article 6.9.4.2.1 requires that the appropriate linear beam-column 

interaction equation must be used if the local buckling limits are relaxed in the calculation of 

cPn  or bMn. The strength behavior under combined flexure and axial load is discussed further 

in Section 5.6. 

 

5.2.5 Built-up Columns Composed of Two or More Shapes 

 

AASHTO (2014) Article 6.9.4.3 addresses the design of built-up columns composed of two or 

more shapes. These member types include closely-spaced back-to-back angles attached by 

intermittent bolted or welded filler plates or boxed channels (Figure 56a) as well as large 

compression members with flange components that are spaced widely apart. In the latter case, 

the flange components may be connected together by perforated cover plates, lacing with flat 

bars, angles, channels or other shapes, or batten plates as shown in Figure 56b.  

 

The strength behavior of the above types of members differs from the previously discussed cases 

due to the influence of shear deformations or displacements between the connected shapes. The 
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shear deformations reduce the member buckling capacity and induce stresses in the elements that 

connect the shapes together.  

 

Box columns with perforated cover plates designed to Specification rules do not require any 

strength reduction or other special considerations for shear effects. In new bridge construction, 

perforated cover plates are likely to be used rather than laced or battened columns. Conversely, 

the member buckling resistance can be reduced significantly for laced or battened members, with 

the largest reductions occurring for battened columns.  

 

AASHTO Article 6.9.4.3.2 gives an equation for the shear force due to column stability effects, 

which perforated cover plates must be designed for in addition to the shear force from factored 

loads. Article 6.8.5.2 provides additional dimensional requirements for perforated plates that 

ensure adequate member performance. 

  

In built-up members other than box columns with perforated cover plates, the shear deformations 

or displacements between the connected shapes has a significant influence on the built-up 

member axial capacity. In all cases, the end connections must be sufficient to essentially prevent 

the relative longitudinal slip displacement between the connected shapes at the member ends, if 

the built-up member is to be effective as a structural member.  This connection is the dominant 

contributor to making the connected shapes act together.  However, the compressive strength is 

also affected to some extent by the shear restraint provided by the intermediate connectors.  

 

AASHTO (2014) and AISC (2010) both provide equations for a modified slenderness ratio that 

accounts for the effect of shear deformations in the connectors between closely-spaced shapes. 

Article 6.9.4.3.1 of AASHTO (2014) gives the following equation for members with 

intermediate connectors that are welded or fully-tensioned bolted: 
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Figure 56  Types of built-up columns, (a) columns with closely-spaced components and (b) 

columns with widely-spaced components. 

 

Where 

 

or

KL








 = 

slenderness ratio of the built-up member acting as a unit (with shear 

deformation neglected) in the buckling direction being considered,  

 

mr

KL








 = 

 modified slenderness ratio accounting for shear deformation effects, 

 

 

a 

 

= 

 

distance between connectors, 

 

rib  = radius of gyration of an individual component relative to its centroidal axis 

parallel to the axis of buckling, 

 

 = separation ratio = h/2rib, and 
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H = distance between the centroids of the individual components perpendicular to 

the axis of buckling.  

 

This equation is that same as Eq. (E6-2) in the previous AISC (2005) Specification. Given the 

above modified slenderness ratio (KL/r)m, the ratio Po/Pe is determined from Eq. (5.2.1-4) and 

then substituted into Eqs. (5.2.1-1) to determine the nominal column capacity. The buckling 

capacity about the y-axis of the two channel sections shown in Figure 56a, attached either toe-to-

toe or back-to-back at the spacing a, is determined in this fashion. The strength of this type of 

column is governed either by flexural buckling about the y-axis, including the reduction in 

strength due to the shear displacement between the shapes via Eq. (1), or by flexural buckling 

about the x-axis, which is calculated in the manner described in the previous sections and does 

not include any reduction for shearing deformation effects. In the case of back-to-back double 

angles such as in Figure 56a, (KL/r)m is used in place of (KL/r)y in determining Pey. This 

modified Pey is then utilized in the torsional-flexural buckling equations as discussed in Section 

5.2.3 and 5.2.4 of this module as applicable. The column strength is governed by the smaller 

value of the resistance due to flexural buckling about the x-axis or torsional-flexural buckling 

involving twisting combined with bending about the y-axis.  

 

AISC (2010) has adopted a simpler alternative to Eq. (1) that also gives somewhat better 

predictions relative to test results for fully-tensioned bolted built-up members with closely-

spaced individual components, i.e., members such as double-angles or double-channels.  The 

new AISC equation is based on the research by Sato and Uang (2007).  

 

AASHTO (2014) Article C6.9.4.3.1 gives a separate equation that it considers applicable for 

riveted connectors on existing bridges. This equation is adopted from an AISC (2005 and 2010) 

equation for snug-tight bolted members, and was developed empirically based on the test results 

from Zandonini (1985). The ends of the member must be connected rigidly, such as attained by 

welding, fully-tensioned bolting or the use of end tie plates, for this equation to be valid.  

 

In both of the above cases, the connectors must be adequate to resist the shear forces that develop 

in the buckled member. AISC (2010) and AASHTO (2014) do not provide guidelines for this 

check. The AASHTO (2014) Article 6.9.4.3.2 equation for the additional required member 

transverse shear force in perforated cover plates may be applied for these cases. In addition, 

AISC (2010) indicates in a user note that it is acceptable to design a bolted end connection of a 

built-up compression member for the full compressive load with the bolts acting in shear and the 

bolt resistances based on bearing values. The implication is that connections designed in this way 

are sufficient to prevent slip between the components at the member ends. It is emphasized that 

the prevention of slip is necessary for the structural efficiency of the built-up member and for the 

validity of the corresponding AASHTO (2014) and AISC (2010) resistance equations.  

 

Lastly, an essential requirement for built-up members composed of two or more shapes is that 

the minimum a/ri of each component shape between the connectors, lacing or batten plates must 

be less than or equal to 3/4 the governing L/r of the built-up member as a whole, where ri is the 

least radius of gyration of a component part. Duan et al. (2002) studied the effect of larger a 

values theoretically, and concluded that a wider spacing makes the built-up member susceptible 

to further reductions in the axial capacity due to interaction between the buckling of the 
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component members within the length a between the intermediate elements and the buckling of 

the entire member over its full length L.  

 

Neither AASHTO (2014) nor AISC (2010) address the influence of the strain energy developed 

in lacing or batten plates on the column capacity. Equation (1) is a refinement and generalization 

of an equation that Bleich (1952) derived for battened columns neglecting the energy due to local 

bending of the battened plates, but assuming zero shearing deformation of the end tie plates. 

Aslani and Goel (1991) summarize the theoretical development of this equation and show that it 

gives accurate to slightly conservative predictions of experimental results for double-angle 

braces. However, their derivation is general, and they suggest that it is also applicable to built-up 

columns with widely-spaced components.  

 

Ziemian (2010) outlines other solutions for determining the elastic buckling load, Pe, in laced or 

battened columns, which include the contribution from the lacing or battens to the strain energy. 

It references Johnston (1976) for further details and illustrative example designs. Once the load 

Pe is determined, it may be substituted into Eqs. (5.2.1-1) to determine the nominal design 

compressive strength Pn. There is little benefit to be gained by using formulations other than Eq. 

(1) for battened members. However, the alternate formulations from Ziemian (2010) tend to give 

larger capacities than Eq. (1) for laced columns.  

 

5.2.6 Columns with Tapered and/or Stepped Sections and/or Nonuniform Internal Axial 

Force 

 

Kaehler et al. (2011) detail a procedure for calculation of the compressive resistance of general 

prismatic or nonprismatic steel members subjected to constant or nonconstant internal axial force 

along their length. For these types of members, it is convenient to work directly with the 

following concise form for the axial capacity ratio Pu/Pn associated with Eqs. (5.2.1-1):  
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where Pu is the axial load at a given cross-section due to the factored loadings, Pn is the 

corresponding design resistance,  
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is the ratio of the factored axial load Pu to the stub-column strength Po, and 
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is the ratio of the member elastic buckling resistance, Pe, to the factored (i.e., the required) axial 

load, Pu. As noted previously, the stub-column strength, Po, is equal to FyAg for cross-sections 

that do not have slender elements, and it is equal to QFyAg = QsQa FyAg = QsFy QaAg for slender 

element cross-sections. The term o also may be considered as the ratio of the average required 

cross-section axial stress fa = Pu/Ag to the cross-section effective yield stress, QFy, as shown by 

the second equality in Eq. (2). Furthermore, the term Fe = Pe/Ag is the cross-section average axial 

stress at incipient elastic buckling, and e may be considered as the ratio of this elastic buckling 

stress to the average required axial stress, fa = Pu/Ag, as shown by the second equality in Eq. (3).  

 

The calculations for a general nonprismatic member subjected to nonconstant internal axial force 

originate from the seminal research by Lee et al. (1981). For situations where the resistance is 

governed by elastic column buckling, the axial capacity ratio Pu/Pn in Eq. (1b) depends only on 

the ratio e = Pe/Pu = Fe/fa. This ratio is the same value for any cross-section along the member 

length. Given a general distribution or diagram of Pu along the member length, the elastic 

buckling load level is obtained simply by scaling up all the applied loads on the structure, and 

thus scaling the internal values of Pu, until elastic buckling of the member or structure occurs. 

Kaehler et al. (2011) discuss various methods for calculating the ratio e for general members 

and frames.  

 

For the more common situation where nominal yielding occurs along a portion of the member 

length (due to the applied load plus initial residual stresses), Eq. (1a) governs for the axial 

resistance. In this case, Pu/Pn depends on both e and o. Lee et al. (1981) and White and Kim 

(2006) demonstrate that the axial capacity ratio (Pu/Pn) may be calculated adequately for this 

case by mapping the nonprismatic nonuniformly-loaded member to an equivalent prismatic 

member that has:  

 

1. The same e, and  

 

2. A o equal to the largest o value along the entire length of the physical member, o.max.  
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Figure 57  Conceptual mapping of a tapered-web I-section member subjected to constant 

axial compression to an equivalent prismatic member. 

 

Figure 57 illustrates this approach for a tapered-web I-section member subjected to constant 

axial compression Pu. The equivalent prismatic I-section member has the same nominal extent of 

yielding along its entire length that the nonprismatic member has at its most highly stressed 

cross-section. For cases where the most highly stressed cross-section (the one with o.max) is 

located at a brace point, this approximation tends to be conservative. However, in situations 

where o.max occurs at a cross-section within the member unsupported length (for example if 

o.max occurs at the smaller cross-section at a section transition within the unsupported length), 

the approximation tends to be more accurate. 

 

Based on the above concepts, the axial capacity ratio Pu/Pn may be determined generally as 

follows: 

 

1. Calculate o = Pu / Po at the various cross-sections along the member length. At any 

cross-sections containing slender plate elements, Po is determined using Eq. (5.2.4-14), 

Qa in Eq. (5.2.4-14) is determined using f = QsFy in Eqs. (5.2.4-10) or (5.2.4-11), and Qs 

in the expression for f is determined from Eq. (5.2.4-6).  

 

2. Determine the maximum value of o, i.e., o.max, for all the cross-sections along the 

member length.  

 

3. Determine the minimum ratio of the elastic buckling load to the factored axial load for 

the member  

 

e.min = min (ex, ey, eTF) (5.2.6-4) 
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4. as appropriate, where ex is the critical load ratio for elastic flexural buckling about the 

major axis of the cross-section, ey is the critical load ratio for elastic flexural buckling 

about the minor axis, and eTF is the critical load ratio for elastic torsional or torsional-

flexural buckling. 

 

5. Substitute o.max and e.min for o and e in Eqs. (1) to determine the axial capacity ratio 

Pu/Pn.  

 

Kaehler et al. (2011) detail a more complex procedure for I-section members that utilize the 

AISC (2010) approach from Eq. (5.2.4-16) for calculation of f. This approach is not 

recommended. The above recommended procedure simply calculates Q based on f = QsFy at the 

various member cross-sections. In addition to its relative simplicity, this approach is more 

accurate (see Section 5.2.4 of this module). In cases where the member is dominated by flexural 

rather than axial loading, the effect on the final beam-column resistance is typically quite small.  

 

5.2.7  Composite Columns 

 

5.2.7.1 AASHTO (2014) - AISC (1999) approach 

 

AASHTO (2014) uses the AISC (1999) LRFD Specification approach to quantify the axial 

compressive resistance of concrete-filled sections and steel sections encased in concrete. This 

approach, developed based on the work of SSRC Task Group 20 (SSRC 1979), uses the steel 

column strength curve given by Eqs. (5.2.1-1) through (5.2.1-4) with the area of the steel 

section,Ag = As, and a modified yield strength, Fmy, modulus of elasticity, Em, and radius of 

gyration, rm, to account for the effect of the concrete and longitudinal reinforcing bars. These 

modifications are as follows: 
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 (AASHTO 6.9.5.1-5, AISC 1999 I2-2) 

rm = max (rs, 0.3Bc) (5.2.7-3) 

 

where 

 

Ac = area of the concrete, 

 

Ars = area of the continuous longitudinal reinforcing steel bars,  

 

As = area of the encased steel section or the steel tube,  

 

E = modulus of elasticity of the steel (29,000 ksi) 

 

Ec = short-term modulus of elasticity of the concrete,  
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Fy = specified minimum yield strength of the steel section or tube,  

 

Fyrs = specified minimum yield strength of the longitudinal reinforcing steel, 

 

c
f   

= 
specified minimum 28-day compressive strength of the concrete, 

 

rs =  radius of gyration of the steel section or tube in the direction of buckling, and 

 

Bc =  overall width of the composite section in the plane of bending 

 

In addition, it should be noted that the AISC equation numbers in this sub-section correspond to 

the AISC (1999) Specification. The coefficients c1 and c2 account for the contributions of the 

reinforcing steel and concrete to the stub-column strength Po, whereas the coefficient c3 accounts 

for the contribution of the concrete to the stiffness of the overall section. In the context of Eqs. 

(5.2.1-1), the AASHTO (2014) - AISC (1999) approach specifically uses  

 

Po = Fmy As  (5.2.7-4) 

and 
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 (AASHTO 6.9.6.1-6) 

 

For encased sections, AASHTO (2014) and AISC (1999) use 

 

c1 = 0.7, c2 = 0.6 and c3 = 0.2 (5.2.7-6) 

 

whereas for filled sections,  

 

c1 = 1.0, c2 = 0.85 and c3 = 0.4 (5.2.7-7) 

 

If present in a filled section, the reinforcing steel is always supported sufficiently such that it can 

develop its full capacity (c1 = 1.0). However, for encased sections, a reduced c1 value is 

employed to account for the potential spalling of the concrete, leaving the steel bars exposed. 

The coefficient c2 assumes that the concrete will at least reach a stress of 0.85 c
f   because of the 

confinement available in filled sections. However, for encased sections, the ACI (1977) 

reduction to 70 % of the capacity for components relying on unconfined concrete was applied, 

i.e., c2 = 0.7(0.85)  0.6. For the stiffness coefficient c3, SSRC (1979) adopted the ACI (1977) 

recommendations. For confined concrete, ACI (1977) recommended using only 40 % of the 

initial stiffness of the concrete, whereas for unconfined concrete, only 20 % was used (hence c3 = 

0.2 for encased sections and 0.4 for filled sections).  

 

For the modified radius of gyration, rm, SSRC (1979) noted that in members where the steel 

section provides the majority of the flexural resistance, the radius of gyration of the steel section, 

rs, is appropriate, while if the concrete portion of the section provides the majority of the flexural 

resistance, the radius of gyration of the concrete section is appropriate. Therefore, the larger of 
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these two values was selected, with 0.3Bc being the radius of gyration of a square concrete cross-

section (i.e., a square column is implicitly assumed in this development).  

 

The AASHTO (2014) - AISC (1999) provisions are applicable only for members in which the 

area of the steel section, As, is greater than 4 % of the total composite section. For smaller As, the 

member must be designed as a reinforced concrete column. There is typically a significant 

discontinuity in the strength predicted by handling the member as a composite steel column 

versus a reinforced concrete column at this limit. Furthermore, the values for Fyrs and Fy used in 

calculating the resistance are restricted to 60 ksi. This is because the concrete stiffness reduces 

significantly at strains near 0.2 percent, and thus the concrete is considered potentially 

ineffective in stabilizing the steel for larger yield strengths. Concrete strengths c
f   < 8 ksi are 

required for normal weight concrete, since there was limited test data for larger strengths at the 

time of the original developments. Concrete strengths c
f   > 3 ksi are required to ensure good 

quality concrete. A number of requirements are specified for the longitudinal reinforcing bars, 

lateral ties and concrete cover in encased sections to ensure good performance of the concrete 

section. For rectangular filled sections, b/t is limited to 1.7(E / Fy)
0.5

 and for circular filled 

sections, D/t is limited to 2.8(E / Fy)
0.5

  to ensure that the steel section yields before the concrete 

crushes or significant local buckling occurs. These limits are the same as the AASHTO (2014) 

Article 6.9.4.1 limits for noncomposite rectangular and circular tubes. 

 

5.2.7.2 AISC (2005) and (2010) approach 

 

AISC (2005) provides substantially updated procedures for calculating the resistance of encased 

and filled composite columns. These procedures provide larger, more accurate resistances, and 

reduce the differences between the AISC and ACI design provisions. The corresponding AISC 

(2010) provisions are essentially unchanged from AISC (2005) for encased composite columns; 

however, a number of new enhancements have been implemented in AISC (2010) for filled 

composite columns that were not present in AISC (2005). The procedures are generally 

conservative, but still have a large coefficient of variation with respect to test data (Leon and 

Aho 2002). This results in a 12 % reduction in the c factor relative to that used in AISC (1999). 

In the new AISC (2010) provisions, Po is calculated more directly as  

 

Po = AsFy + AsrFyrs + 0.85Ac c
f    (5.2.7-8) 

 (AISC I2-4) 

for encased sections, and as  
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 (AISC I2-9b) 

 

for compact filled sections, where C2 = 0.85 and 0.95 for rectangular and circular sections 

respectively. These equations recognize the full development of the continuous reinforcing bars 

for encased columns, and they account for the confinement effects on the concrete strength and 

the compatibility of the concrete and reinforcing steel strains in circular filled sections. 

Furthermore, the equivalent member elastic buckling load is calculated directly as  
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where  

 

EIeff = EIs + CrEIsr + CcEcIc 

 

(5.2.7-11)                      

(AISC I2-6 & I2-

12) 

Is = moment of inertia of the steel section about the axis of 

buckling,  

 

Isr = moment of inertia of the reinforcing bars about the axis of 

buckling, 

 

Ic = moment of inertia of the concrete section about the axis of 

buckling,  

 

Cr = 0.5 for encased sections and 1.0 for filled sections, and   
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 (AISC I2-13) 

 

In addition to the above, the AISC (2010) provisions improve upon the AISC (2005) provisions 

for filled sections by addressing the reduced column axial resistance for more slender HSS or 

box sections of uniform thickness or more slender circular hollow sections. AISC (2010) Chapter 

I provides its own set of tables for classification of these member types as compact, noncompact 

or slender. For rectangular HSS and box sections of uniform thickness, the compactness limit, 

which must be satisfied to use the above filled-section equations, is  
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and for filled circular sections, the corresponding compactness limit is  
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AISC (2005) restricts the usage of its equations to the above limits, whereas AISC (2010) 

introduces the classification of compact, noncompact and slender steel elements in filled 

composite sections and provides additional equations that quantify the reduced axial resistance 

for sections where some of the steel elements are not compact. Although the same names are 

used, the implications of the AISC (2010) classification of filled composite sections are 

fundamentally different than the AISC (2010) and AASHTO (2014) classification of the steel 
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elements as compact, noncompact and slender in other cross-section types. In quantifying the 

axial resistance of filled composite section members: 

 

“Compact” indicates that the section is able to develop a maximum “plateau” resistance of the 

concrete and reinforcing steel, including the influence of confinement from the steel section,  

 

 “Noncompact” indicates that the steel section has sufficient thickness such that it can 

fully yield in the longitudinal direction, but it cannot adequately confine the concrete 

infill after it reaches 0.70fc', at which point the concrete starts undergoing significant 

inelastic deformations and volumetric dilation (pushing against the wall of the steel 

section).  

 

 “Slender” indicates that the steel section can neither develop full yielding on its area in 

the longitudinal direction, nor confine the concrete after it reaches 0.70fc'. 

 

Furthermore, in quantifying the flexural resistance of filled composite section members: 

 

 “Compact” indicates that the section can develop its full plastic moment capacity, Mp, in 

flexure,  

 

 “Noncompact” indicates that the section can develop a moment capacity greater than the 

nominal first-yield moment of the section, Myt, when the tension flange reaches first 

yielding, or greater than the moment corresponding to a maximum concrete compressive 

stress of 0.70fc', but local buckling or inadequate confinement of the concrete in 

compression precludes the development of Mp, and 

 

 “Slender” means that the flexural resistance of the member is limited to the smaller value 

of the first yield moment when the tension flange reaches first yielding and the moment 

corresponding to elastic response of the concrete and a maximum compressive stress of 

0.70fc'. 

 

Elsewhere in the AISC (2010) and AASHTO (2014) Specifications: 

  

 A cross-section containing all “compact” compression elements is capable of developing 

moments equal to the fully-plastic flexural resistance Mp,  

 

 With the exception of the AASHTO (2014) provisions for composite sections in positive 

flexure, a cross-section containing “noncompact” compression elements is capable of 

developing moments larger than the nominal first yield flexural resistance in compression 

including residual stress effects, i.e., Myr = FyrSxc, and  

 

 With the exception of the AASHTO (2014) provisions for composite sections in positive 

flexure, a cross-section with “slender” compression elements has its strength generally 

limited by local buckling of compression elements prior to reaching Myr.  
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 In the AASHTO (2014) provisions for composite sections in positive flexure, a 

“noncompact section” is one in which the maximum potential flexural resistance is limited 

to a compression flange stress of RbRhFyc, corresponding to nominal yielding of the steel 

compression flange, neglecting residual stress effects but including the influence of load 

shedding from a slender and/or hybrid web, or a tension flange stress of RhFyt. For these 

sections, the reasons for limiting the maximum resistance to the above values include 

yield strength of the steel larger than 70 ksi, web slenderness, and/or limiting potential 

inelastic redistribution in curved bridge structural systems (see Sections 5.3.3 and 5.3.4 of 

this module).  

 

 In the AASHTO (2014) provisions for composite sections in positive flexure, a “compact 

section” is one in which the maximum potential flexural resistance is the full plastic 

moment of the composite section (see Section 5.3.3).  

 

The AISC (2005) and (2010) provisions for composite columns are applicable for As/Ac as small 

as 1 %. Furthermore, the specified minimum yield strength of the structural steel and reinforcing 

bars is increased to 75 ksi. The provisions are extended to concrete strengths up to c
f   = 10 ksi 

for normal weight concrete. Also, the required area for the transverse ties in encased sections is 

increased slightly relative to AISC (1999), from 0.007 to 0.009 in
2
/in of tie spacing, and a 

minimum reinforcement ratio for continuous longitudinal bars in these sections is relaxed 

slightly from 0.007 to 0.004. However, a minimum of four continuous longitudinal bars is 

required in encased columns. In addition, the above equations for encased sections are based on 

studies of doubly-symmetric composite columns. The commentary to Section I2.1b of AISC 

(2010) provides guidelines for the limited use of these equations with columns having non-

symmetric cross-sections. 

 

AISC (2010) specifies detailed rules for load transfer to the composite cross-section in encased 

and filled sections that are enhancements on prior AISC (1999) and AISC (2005) provisions. 

  

5.2.7.3 Axial compression resistance of composite bridge girders  

 

In some situations, steel bridge girders designed compositely with a concrete deck are subjected 

to combined flexure and axial compression. This occurs for instance in a cable-stayed bridge 

with a composite I- or box-girder deck system. Axial compression can also occur due to restraint 

of thermal expansion in stringer bridges, although these effects typically are rendered negligible 

by the movements permitted at integral abutments or deck joints. AASHTO (2014) Articles 

C6.10.6. 1 and C6.11.6.2.1 allow the Engineer to neglect a concentrically-applied axial force Pu 

in all types of I- and box-girder members whenever Pu/cPn is less than 0.1. However, for 

Pu/cPn > 0.1, I- and box-girders must be checked in general as beam-columns. Any moments 

generated about the effective centroidal axis, due to eccentric application of axial loads, must be 

considered. An appropriate calculation of this effective axis is suggested below. Bending 

moments due to transverse loads and eccentricity of the applied axial loads are addressed 

separately in the flexural resistance calculations (see Sections 5.3.3 through 5.3.7 and 5.4.6 

through 5.4.12 of this module). 
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In all of the above cases, the Engineer needs to calculate cPn for the composite girder. AISC 

(2010) provides substantial guidelines regarding the calculation of the resistance of flexural 

members subjected to combined axial load in the Commentary to its Section I7. However, this 

discussion is primarily directed at the calculation of the strength of collector components in 

building floor systems. Neither AASHTO (2014) nor AISC (2005) provide specific guidelines 

for this calculation, although the commentary of AISC (2005) does provide the following broad 

guidance in the context of composite I-section members:  

 

“Adequate means to transmit axial loading to and from the steel section should be 

provided. Where shear connectors are used, the top flanges may be considered braced for 

compressive loading at the shear connector locations…. For load combinations resulting 

in compressive loading of the lower flange, length effects between brace points should be 

considered. Inflection points should not be considered as braced points for torsional 

buckling of the unbraced flange.” 

 

Specifically, the axial compressive resistance of a composite I-girder may be governed either by 

flexural buckling about the major axis of bending, or by torsional buckling of the steel I-section 

about an enforced axis of rotation located at the depth of the shear connectors. The first of these 

limit states is expected to rarely control. It is suggested that it can be checked conservatively by 

using Eq. (11) for EIeff, with Cc taken equal to the value of 0.2 implied in the AASHTO (2014) - 

AISC (1999) composite column provisions, then using Eq. (10) to calculate Pe. Since the 

composite cross-section is singly-symmetric, the Engineer will need to determine its effective 

centroidal axis for calculation of the separate contributions to the effective moment of inertia, Ieff. 

It is suggested that the full steel cross-section may be used for this calculation, consistent with 

the handling of slender-element cross-sections discussed in Section 5.2.4 of this module, and that 

a modular ratio of n/0.2 should be used for the concrete slab. The contribution of the longitudinal 

reinforcing steel in Eq. (11) usually will be quite small compared to the other terms, and thus it is 

suggested that this term should be neglected. Some judgment must be used in selecting the 

effective width of the slab concrete for use in Eqs. (4) and (11). Chen et al. (2005) suggest a 

lower bound effective width of 90 % of the full width for regions away from the towers and 70 

% of the full width in regions close to the towers in cable-stayed bridges with two edge girders, 

two pylons, a semi-harp cable configuration with two planes of cables, a relatively thin concrete 

slab, cable spacing at approximately 10 % of the back span length, and floor beam spacing 

approximately one-third of the cable spacing.  

 

Conversely, the load corresponding to the elastic torsional buckling of the steel I-girder about an 

enforced axis of rotation at the shear connectors is given by 
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Figure 58  Cross-section displacements and relevant cross-section dimensions for torsional 

buckling about an enforced axis at the depth of the shear connectors. 

 

where Cw
 
is the warping constant of the steel section, as and ac are the distances from the shear 

center and centroid of the steel cross-section to the fixed axis of rotation respectively, and Lb is 

the length between the locations where the cross-section is prevented from twisting (Timoshenko 

and Gere 1961; Bleich 1952). Figure 58 shows the typical case where the bottom flange is larger 

and as > ac. Equation (14) gives a substantially larger buckling load than obtained based on the 

flexural buckling of the unrestrained steel I-section member about its minor principal axis.  

 

Equation (14) neglects the torsional restraint potentially provided by the deck to the steel I-

section member. The effect of this restraint is reduced substantially in many cases due to web 

distortion. Torsional restraint of the steel I-section is assumed only at the cross-frame locations, 

i.e., Lb is the spacing between the cross-frames. Equation (14) also neglects the axial force 

contribution from the deck at the incipient elastic torsional buckling of the steel section.  

 

Given the above calculations of Pe and PeT, it is desired to calculate Pn from Eqs. (5.2.1-1). As 

such, the Engineer is faced with a decision about the appropriate calculation of Po. It is 

recommended that, with one exception, Po may be calculated as  

 

Po = As(QFy) + AsrFyrs + 0.85Ac c
f   (5.2.7-15a) 

 

where Q = QsQa is determined as discussed in Section 5.2.4 of this module, using f = Fy in 

calculating the effective width of the web. Since the top flange is connected compositely to the 

deck, it should always be considered as a nonslender element (i.e., Qs = 1). For hybrid composite 

I-girders, the As(QFy) term in Eq. (15a) should be determined as discussed previously in Section 

5.2.4. The exception to the use of Eq. (15a) is that, when calculating the ratio Po/Pe for the 

torsional buckling limit state, Pe should be taken as PeT from Eq. (14) and Po should be 

determined as 

 

Po = As(QFy) (5.2.7-15b) 
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This accounts for the fact that PeT does not include any axial force contribution from the deck.  

 

Procedures similar to the above can be used to obtain Pe and Po for a composite box girder. 

However, torsional buckling is not a consideration for these members. Therefore, Pe may be 

calculated based solely on flexural buckling about a horizontal axis through the effective 

centroid. This elastic buckling load usually will be quite large, and therefore Pn will be 

approximately equal to Po.  

 

The AISC (2005) commentary also discusses the potential need for a larger number of shear 

connectors for axial load transfer and added flexure. However, this statement is in the context of 

the typical use of partially-composite I-beams in building construction. In current design 

practice, bridge girders are usually designed as fully-composite and the shear connectors are 

designed for fatigue in addition to strength. Therefore, in most cases, no additional shear 

connectors will be necessary to handle combined axial loading and compression. Thus, no 

special detailing of the concrete deck is necessary beyond that required by AASHTO (2014) 

Chapter 9.  

 

Equation (14) also can be used to calculate the compressive resistance of noncomposite I-girders 

when the top flange is embedded in the concrete deck. These types of members would be 

checked for flexural buckling about their major axis of bending using the corresponding KL/r to 

determine Pe, and using Eq. (14) to calculate Pe = PeT corresponding to torsional buckling about 

an enforced axis of rotation at the top flange.  

 

5.3 I-Section Flexural Members 

 

5.3.1  Introduction  

 

The AASHTO (2014) Article 6.10 and Appendices A6 through D6 provisions for I-section 

flexure are central to the behavior and design of many of the bridge structural systems discussed 

in Section 2 of this module. Because of the large number of I-beam and I-girder stringer bridges 

used in highway construction, these provisions have possibly the greatest overall impact of all 

the AASHTO (2014) Specifications with respect to steel bridge construction. Furthermore, a 

number of the AASHTO (2014) Article 6.11 rules for box-girder design utilize or parallel 

specific I-section member provisions.  

 

The calculation of the nominal flexural resistance of the various types of I-section members can 

be explained conceptually with just a few figures. However, numerous parameters must be 

considered for the wide range of I-section members utilized in design practice. Section 5.3.2 of 

this module initiates the discussion of I-section flexural members by outlining basic 

proportioning limits defined in AASHTO (2014) Article 6.10.2. Sections 5.3.3 and 5.3.4 then 

provide an overview of the AASHTO (2014) Article 6.10.7 provisions for composite members in 

positive major-axis bending. Most of the details for design of I-section members fall under the 

category of composite members in negative bending and noncomposite members. Section 5.3.5 

outlines the key concepts and the basics of the calculations for the various design parameters 

pertaining to major-axis bending of these member types. All of the discussions of Sections 5.3.3 

through 5.3.5 focus on prismatic member unbraced lengths. Section 5.3.6 explains how the 
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prismatic member rules are generalized to handle variable web depth I-section members and/or I-

section members with cross-section transitions along their lengths. Section 5.3.7 then addresses 

the handling of combined major-axis bending, torsion and minor-axis bending in AASHTO 

(2014). Finally, Section 5.3.8 discusses the shear strength of I-section members, Section 5.3.9 

addresses the strength of shear connectors for composite construction, and Section 5.3.10 

discusses various “secondary” limit states such as web crippling and web yielding due to 

concentrated transverse loads.  

 

5.3.2  Proportioning Limits 

 

AASHTO (2014) Article 6.10.2 provides basic rules targeted at ensuring the economical and 

practical proportioning of I-section members in preliminary design. Also, these rules provide 

practical bounds on which the flexural resistance provisions are based. Article 6.10.2.1.1 requires 

that webs without longitudinal stiffeners shall satisfy the following depth-to-thickness limitation 

 

D/tw < 150 (5.3.2-1) 

 (AASHTO 6.10.2.1.1-1) 

 

This limit helps ensure ease of handling, permits simplification of resistance calculations for 

composite members (discussed subsequently in Section 5.3.3 of this module), and helps ensure 

adequate performance with respect to web distortion induced fatigue for members that do not 

have web longitudinal stiffeners. For longitudinally-stiffened I-section members, Article 

6.10.2.1.2 requires 

 

D/tw < 300 (5.3.2-2) 

 (AASHTO 6.10.2.1.2-1) 

 

Equation (2) is simply a practical upper bound on the slenderness of webs with longitudinal 

stiffeners. I-girders with larger D/tw values are more susceptible to secondary limit states such as 

transverse web crippling. Both of the above limits are expressed in terms of the total web depth 

to thickness, for ease of use in preliminary design.  

 

Article 6.10.2.2 specifies limits on the flange dimensions. The half-width to thickness ratio is 

limited for both compression and tension flanges to  

 

bf / 2tf < 12 (5.3.2-3) 

 (AASHTO 6.10.2.2-1) 

 

This limit is targeted predominantly at ensuring that the flanges of I-girders will not distort 

excessively when they are welded to the web. However, it also allows for some simplification of 

the flange local buckling resistance equations in AASHTO (2014) as discussed subsequently in 

Section 5.3.5. Article 6.10.2.2 also specifies  

 

bf > D/6 (5.3.2-4) 

 (AASHTO 6.10.2.2-2) 
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tf > 1.1 tw (5.3.2-5) 

 (AASHTO 6.10.2.2-3) 

and  

 

0.1 < Iyc/Iyt < 10 (5.3.2-6) 

 (AASHTO 6.10.2.2-4) 

 

where Iyc and Iyt are the moments of inertia about the plane of the web for the compression and 

tension flanges respectively. Few I-section member tests have been conducted with depths D 

larger than 6bf. Furthermore, a number of the available tests for deep narrow-flange members 

that violate Eq. (4) indicate significant degradation in the resistances relative to the prediction 

equations in AASHTO (2014) and AISC (2010) as well as in previous Specifications (White and 

Jung 2008; White and Kim 2008; White and Barker 2008; White et al. 2008). Also, I-sections 

with narrow flange widths violating Eq. (4) generally require bracing at close intervals to avoid 

significant reductions in their flexural resistance due to lateral-torsional buckling. Equation (5) 

requires that the flange thicknesses must be slightly larger than the web thicknesses in bridge I-

section members. There is evidence of acceptable performance of I-section members with tf = tw; 

however, the requirement for the additional flange thickness in Eq. (5) helps ensure member 

robustness and does not appear to impose any practical or economic limitations on bridge 

construction. The combination of Eqs. (2) and (3) restricts the ratio of web-to-flange area for 

either flange, Aw/Af = Dtw/bf tf , to a maximum value of 5.4. Lastly, Eq. (6) ensures efficient 

relative flange proportions and prevents the use of extremely monosymmetric I-sections that may 

be difficult to handle during construction and for which the I-section member flexural resistance 

equations are generally not valid.  

 

Article C6.10.3.4 recommends one additional limit on the minimum flange width, pertaining to 

constructability, that deserves mention in the context of general I-section proportioning limits. 

This article suggests  

 

bfc > L/85 (5.3.2-7) 

 (AASHTO C6.10.3.4-1) 

 

where L is taken as the length of a shipping piece. This limit helps alleviate potential problems 

due to out-of-plane distortion of the girder compression flange during fabrication, shipping and 

erection.  

 

5.3.3  Compact Composite Sections in Positive Flexure 

 

5.3.3.1 Section classification 

 

AASHTO (2014) Article 6.10.6.2.2 defines composite sections in positive bending as compact 

sections when:  

 

 The specified minimum yield strengths of all the flanges do not exceed 70 ksi 

 D/tw < 150  
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 
ycwcp

FEtD /76.3/2   (5.3.3-1) 

 (AASHTO 6.10.6.2.2-1, AISC Section I3.2a)  

and  

 

 The bridge is straight (no horizontal curvature or kinked (chorded) continuous geometry). 
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Figure 59  Illustrative plastic cross-section models for composite I-sections in positive 

bending. Cases for plastic neutral axis (PNA) in concrete deck below Prb, concrete deck at 

Prb, concrete deck at Prt and concrete deck above Prt are not shown. 

 

This means that the fully-plastic cross-section models shown in Figure 59 may be used as the 

base for the member resistance calculations. The first of the above limits is specified to avoid 

potential crushing of the deck concrete prior to reaching the calculated flexural resistance. For Fy 

= 70 ksi, the yield strain of the steel y = Fy/E = 0.0024 is slightly beyond the level of strain 

corresponding to the peak compressive stress for typical deck concrete. For Fy = 100 ksi, the 

yield strain of the steel is 0.0034, which is somewhat beyond the nominal concrete crushing 

strain. The second limit is the Eq. 5.3.2-1 restriction on the web width-to-thickness ratio beyond 

which longitudinal stiffeners are required. Since longitudinally-stiffened sections tend to be 

deeper and are typically used in longer spans with corresponding larger dead load stresses, they 

often have large elastic 2Dc/tw values. These large web slenderness values may result in 

significant web bend buckling prior to development of flexural yielding, even if the above third 

limit is satisfied at the theoretical plastic limit state. Furthermore, because of the relative size of 

the steel section to the concrete deck typical of these types of sections, and due to the thinness of 

the web, the plastic moment capacity Mp often is not significantly larger than the yield moment 

My (or the yield moment modified for hybrid web effects, RhMy). The third limit is the AASHTO 

(2014) - AISC (2010) web compactness limit corresponding to the plastic depth of web in 

compression, Dcp, in Figure 59. Webs more slender than this limit are nominally unable to 

develop the large inelastic strains necessary for the cross-section to reach its plastic moment Mp. 

The fourth limit has been discussed previously in Section 3 of this module. The above four limits 

are simple restrictions intended to limit the use of the plastic cross-section model of Figure 59 to 

designs where it is supported by test data. Future research may lead to some relaxation of a 

number of these limits.  
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5.3.3.2  Flexural resistance 

 

The base model shown in Figure 59 is the same as the Whitney rectangular stress block model 

used in reinforced concrete design except that the concrete rectangular stress block is always 

taken as the full depth in compression above the plastic neutral axis (PNA) rather than a fraction 

of this depth. This simplification generally results in a negligible or only a slight increase of the 

calculated plastic moment. The effective width of the concrete slab is assumed to be stressed in 

compression at 0.85fc', and all the reinforcing and structural steel elements are assumed to be 

stressed at their yield strengths Fy. AASHTO (2014) Article D6.1 gives equations for the PNA 

location and the corresponding Mp for all potential PNA positions in the slab or in the steel I-

section. These equations are based simply on equilibrium of the fully-plastic stress distributions 

and the assumption of zero axial force. The concrete within the haunch over the girder flanges is 

neglected in the AASHTO (2014) equations for purposes of simplicity. However, the nominal 

height of the haunch is included. The reader is referred to Article D6.1 for the detailed equations.  

 

AASHTO (2014) Article 6.10.7.1.2 does not necessarily use the full plastic moment Mp as the 

nominal flexural resistance for compact composite sections in positive bending. This Article 

specifies  

 

Mn = Mp  (5.3.3-2) 

 (AASHTO 6.10.7.1.2-1) 

 

when Dp < 0.1Dt, where Dp is the depth of the plastic neutral axis below the top of the deck (see 

Figure 59) and Dt is the total depth of the composite section. However, when Dp/Dt > 0.1, it 

specifies 

 

Mn = Mp (1.07 – 0.7 Dp/Dt) (5.3.3-3) 

  (AASHTO 6.10.7.1.2-2) 

 

The AASHTO (2014) resistance factor for flexure is f = 1.0 for all types of composite and 

noncomposite members.  

 

Equation (3) enforces a higher margin of safety for members with larger Dp/Dt, as first 

recommended by Wittry (1993). The increase in the margin of safety, relative to the theoretical 

resistance determined from a strain-compatibility analysis at crushing of the deck concrete, 

varies linearly from 1.0 at Dp/Dt = 0.1 to approximately 1.3 at Dp/Dt = 0.42. Strain-compatibility 

analyses of a wide range of practical composite sections indicate only a slight decrease in the 

cross-section moment below M = Mp when the top of the slab reaches the theoretical crushing 

strain of 0.003 (Wittry 1993; White 2002). However, composite members with large Dp/Dt tend 

to have significantly smaller plastic curvature prior to crushing of the deck concrete and thus less 

ductility. Also, AASHTO (2014) specifies 

 

Dp/Dt < 0.42  (5.3.3-4) 

 (AASHTO 6.10.7.3-1) 
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to ensure significant yielding of the bottom flange prior to reaching the nominal crushing strain 

at the top of the deck. This limit is consistent with the former maximum reinforcement limit for 

concrete design given in AASHTO (2004) Article 5.7.3.3.  

 

In addition to the above equations, AASHTO (2014) Article 6.10.7.1.2 limits the nominal 

flexural resistance to that given by Eq. (2) in continuous-span beams where the adjacent pier 

sections are not detailed to accommodate significant inelastic moment redistribution. The reader 

is referred to Section 3 of this module for discussion of this limit. 

 

AASHTO (2014) generally requires that the separate effects of noncomposite, short-term 

composite and long-term composite loadings shall be considered in calculating the nominal 

flexural resistance. However, for compact composite sections in positive bending, the effect of 

these different types of loadings on the flexural stresses and on partial yielding of the cross-

section need not be considered. Since these cross-section types are able to sustain inelastic 

curvatures sufficient to develop their nominal full plastic moment, the effect of the different 

loadings is negligible with respect to the section maximum strength. AASHTO (2014) Article 

6.10.1.5 still requires an analysis of the structure separately for the noncomposite, short-term 

composite and long-term composite loadings. The relative proportion of the three types of 

loadings typically will have some effect on the distribution of the moments and forces in the 

structure.  

 

5.3.3.3 Handling of creep and shrinkage effects 

 

Stresses in the concrete deck due to permanent loads acting on the composite structure cause the 

concrete to creep. The effect of creep is to relieve the stresses in the concrete and increase the 

stresses in the steel. AASHTO (2014) Article 6.10.1.1.1a addresses the influence of creep on the 

steel stresses in a reasonable but approximate fashion by using three times the modular ratio, 3n 

= 3Es/Ec, when transforming the elastic concrete section to an equivalent steel section for 

analysis of the effects of permanent loads on the steel in composite bridges. Oehlers and 

Bradford (1999) discuss the accuracy of this type of approximation. AASHTO (2014) Article 

6.10.1.1.1d requires the conservative use of the short-term modular ratio n = Es/Ec for calculation 

of longitudinal flexural stresses in the concrete due to all permanent and transient loads. This is 

important primarily for determining where sufficient longitudinal reinforcement should be 

provided in the concrete deck to control cracking (e.g., see AASHTO Articles 6.10.3.2.4 and 

6.10.1.7).  

 

Concrete slab shrinkage also has an effect on the detailed structural behavior. During the first 

several months after construction, the slab shrinks. In simple-span structures, this induces tensile 

stresses in the slab, compressive stresses in the top flanges of the steel I-sections and tensile 

stresses in the bottom flanges of the steel I-sections. Tests have indicated that the unit shrinkage 

of the slab in composite beams (i.e., the shrinkage strain adjusted for long-term relaxation 

effects) may be taken equal to 0.0002 (Viest et al. 1958). The corresponding stresses may be 

computed adequately by assuming that the shrinkage does not cause cracking. The steel stresses 

in straight simple spans may be approximated by considering the composite cross-section as an 

eccentrically loaded column with a load of 0.0002EcnAc applied at the centroid of the slab and 

using n = Es/Ec (Viest et al. 1958).  
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The shrinkage stresses in the concrete deck for simple spans, and in the positive moment regions 

of continuous spans, are counteracted by the composite dead and live load stresses. Furthermore, 

compact composite I-section members in positive bending develop maximum strengths that 

involve significant yielding and inelastic redistribution of the cross-section stresses. The steel 

section in noncompact composite members in positive bending (addressed in the next section) 

tends to be larger relative to the concrete slab, and hence the influence of the loading 

0.0002EcnAc is smaller. Also, any strength beyond first yielding of the steel section is neglected 

in noncompact composite I-section members. Therefore, AASHTO (2014) neglects the 

additional incidental compression in the top of the steel I-sections in positive bending regions in 

all cases with one exception discussed below. In the negative moment regions of continuous 

beams, the slab concrete is neglected in all cases in determining the member flexural resistance. 

Also, due to minor slip at the shear connectors between the slab and the steel girders and minor 

cracking in the slab, the shrinkage forces are not likely to be fully effective. Hence, AASHTO 

(2014), with one exception, considers that the shrinkage stresses are not an important factor with 

respect to strength for all types of composite sections in negative bending.  

 

The exception to the above simplifications is addressed in AASHTO (2014) Article 3.4.1 for 

composite girders where the slab is longitudinally post-tensioned. In this case, the AASHTO 

provisions indicate that the effect of shrinkage and long-term creep around the shear connectors 

should be evaluated to ensure that the composite girder is able to maintain the prestressing over 

the life of the bridge. This article also states that the contribution of long-term deformations in 

closure pours between precast deck panels that have been aged to reduce the shrinkage and creep 

may need evaluation. AASHTO (2014) Article C6.10.1.1.1a also indicates that for shored 

construction where close tolerances on the final girder cambers are important, the above handling 

of creep effects may not be appropriate. Refined analysis of shrinkage effects also may be 

important in other types of structures requiring close tolerances on girder cambers, e.g., in spans 

supporting elevated tracks for maglev trains (Frank 2005). Article C4.6.6 of AASHTO (2014) 

points out that general creep and shrinkage effects may be analyzed in the same fashion as strains 

due to temperature gradient through the bridge cross-section.  

 

5.3.4  Noncompact Composite Sections in Positive Flexure 

 

AASHTO (2014) classifies composite sections in positive bending as noncompact sections when 

any of the limits listed in Section 5.3.3 of this module are violated. The flexural resistance of 

these section types is defined by limiting the elastically computed compression and tension 

flange stresses to  

 

Fnc = RbRhFyc  (5.3.4-1) 

  (AASHTO 6.10.7.2.2-1) 

 

and  

 

Fnt = RhFyt  (5.3.4-2) 

  (AASHTO 6.10.7.2.2-2) 
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respectively, where Rb is the web load-shedding strength reduction factor specified in AASHTO 

Article 6.10.1.10.2 and Rh is the hybrid web strength reduction factor specified in AASHTO 

Article 6.10.1.10.1. These factors are discussed further in Section 5.3.5 of this module. 

AASHTO (2014) specifies the resistance of these types of sections in terms of the elastically 

computed flange stresses, rather than the stress-resultant moments, for the following reasons: 

 

1. The separate effects of noncomposite, short-term composite and long-term composite 

loadings are considered explicitly in the strength assessment of these section types. For 

noncompact sections, the moments due to the above separate loading effects cannot be 

added together to determine the overall effect. The only rational way to address the 

separate loading effects is to consider the elastic cross-section stresses directly.  

 

2. Bridge cross-sections such as those shown in Figure 3 through Figure 5 are more likely in 

longer-span structures where it may be desirable to violate one or more of the limits 

stated in Section 5.3.3. In these cases, the appropriate slab effective width for use with 

the main girders and/or with the secondary stringers potentially can be determined more 

rationally using a refined analysis that models the plate action of the concrete deck. The 

stress format for the cross-section resistances allows the Engineer to focus directly on the 

steel section stresses determined from this type of analysis. Conversely, the use of a 

moment format for the cross-section resistances requires further processing, including 

assumptions about the effective width of the deck that acts compositely with each of the 

steel members.  

 

For compact composite sections in positive bending, the flexural resistances are potentially 

larger than the yield moment capacity of the cross-section. As a result, if the resistances are 

expressed in terms of elastically computed flange stresses, they can be larger than the 

corresponding flange yield stress. Furthermore, as noted at the end of Section 5.3.3, the elastic 

stresses are generally redistributed by inelastic deformations as the strength limit is approached 

in compact section members. Therefore, for compact section members, the resistances are 

expressed more naturally in terms of the total moment.  

 

The elastically computed flange stresses used for checking of noncompact composite I-sections 

in positive bending are based generally on the assumption that the concrete stress-strain behavior 

is nominally linear. AASHTO (2004) considered that this assumption was valid without 

checking for all types of unshored composite construction, although it explicitly required that the 

longitudinal compressive stresses in the concrete deck should be limited to 0.6fc' in shored 

composite noncompact section members subjected to positive bending, to ensure linear behavior 

of the concrete. AASHTO (2014) requires this check for all types of construction, and provides 

guidance regarding the unusual cases where this limit is apt to control. 
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5.3.5  Composite Sections in Negative Flexure and Noncomposite Sections 

 

5.3.5.1 Key concepts 

 

In AASHTO (2014), the flexural resistance of all types of composite I-section members in 

negative flexure, and of all types of noncomposite I-section members, is governed by the most 

critical of the three following limit states:  

 

 Lateral-torsional buckling (LTB),  

 

 Compression flange local buckling (FLB), and 

 

 Tension flange yielding (TFY).  

 

All of the AASHTO (2014) LTB and FLB resistance equations are based consistently on the 

logic of identifying the two anchor points shown in Figure 60 for the case of uniform major-axis 

bending. Anchor point 1 is located at the unbraced length Lb = Lp for LTB or flange slenderness 

bfc/2tfc = pf for FLB corresponding to development of the maximum potential flexural resistance, 

labeled as Fmax or Mmax in the figure. Anchor point 2 is located at the length Lr or flange 

slenderness rf at which the elastic LTB or FLB resistances are equal to RbFyr in terms of stress 

or RbFyrSxc in terms of moment. The term Fyr is the nominal compression flange stress at the 

onset of significant yielding including residual stress effects, and Rb is the web load-shedding 

strength reduction factor (equal to 1.0 for sections with compact or noncompact webs). In most 

cases, Fyr is taken equal to 0.7Fyc. The inelastic FLB and LTB resistances are expressed simply 

and accurately by linear interpolation between the above two anchor points. For Lb > Lr or bfc/2tfc 

> rf, the LTB and FLB resistances are governed by elastic buckling. The format shown in Figure 

60, and all the underlying base equations, are with minor exceptions the same as in the AISC 

(2010) provisions for noncomposite I-section members.  
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Figure 60  Basic form of flange local buckling (FLB) and lateral-torsional buckling (LTB) 

strength curves for all composite I-section members in negative bending and noncomposite 

I-section members (reprinted with permission from AASHTO (2004)). 

 

For unbraced lengths subjected to moment gradient, the calculated LTB resistance is modified by 

the factor Cb as illustrated by the dashed line in Figure 60. In these cases, the uniform bending 

elastic and inelastic LTB strengths are simply scaled by Cb, with the exception that the resistance 

is capped by Fmax
 
or Mmax. The FLB resistance for moment gradient cases is the same as that for 

uniform major-axis bending, neglecting the relatively minor influence of moment gradient on the 

FLB strengths. 

 

AASHTO (2014) Article C6.10.8.2.3 indicates that for rehabilitation design or in extraordinary 

circumstances, the Engineer may consider modifying Lb in Figure 60 by an elastic effective 

length factor (K) for lateral torsional buckling. However, in most design situations, common 

practice is to take Lb as the actual unsupported length between the brace points corresponding to 

the compression flange-level bracing and/or the diaphragm or cross-frame locations. Article 

C6.10.8.2.3 recommends a simple hand method from Galambos (1998) and Nethercot and 

Trahair (1976) for determining LTB effective length factors K in cases where some additional 

calculation effort is merited. Ziemian (2010) also outlines this method. The application of this 

procedure to prismatic I-section members is explained in Section 5.3.5 of this module, after 

discussion of the more fundamental parameters illustrated in Figure 60. 

 

The TFY flexural resistance addresses the general yielding of the tension flange as the name 

implies. However, depending on the slenderness of the web, the TFY resistance can be larger 

than just the moment corresponding to nominal first yielding of the tension flange. This aspect is 

addressed in more detail in Section 5.3.5.  

 

The governing flexural resistance is generally taken as the smaller of the values calculated 

independently for each of the above idealized flexural limit states.  

 

Depending on which of the three regions that the unbraced length Lb falls in, delineated by 

Anchor Points 1 and 2 in Figure 60, the unbraced length is referred to as compact, noncompact 
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or slender under flexure. Compact unbraced lengths are able to develop the maximum flexural 

resistance, Fmax or Mmax, in uniform bending, assuming that the FLB or TFY resistances are not 

smaller. The uniform bending resistance for noncompact unbraced lengths is reduced relative to 

Fmax or Mmax due to inelastic LTB. Lastly, for slender unbraced lengths in uniform bending, the 

LTB resistance is defined by the corresponding theoretical elastic LTB equations. However, it is 

important to note that the LTB resistance of unbraced lengths subjected to a moment gradient 

(i.e., nonuniform bending along the length) can be increased significantly due to the moment 

gradient effects. As such, Fmax or Mmax can be achieved at much larger unbraced lengths than the 

compact limit Lp. Thus, it is unwise in general to select unbraced lengths or a spacing of the 

cross-frames to enforce Lb < Lp.  

 

Similar to the above discussion, cross-sections with compact compression flanges are able to 

develop Fmax or Mmax, cross-sections with noncompact compression flanges have their flexural 

resistance limited by inelastic FLB, and cross-sections with slender flanges have their flexural 

resistance governed by elastic FLB, assuming that the LTB or TFY resistances are not smaller. 

Actually, AASHTO (2014) does not explicitly provide any elastic FLB equations. This is 

because the proportioning limit bf/2tf < 12  in Article 6.10.2.2 (Eq. 5.3.2-3) precludes elastic FLB 

for all steel I-section members with Fyc < 90 ksi. AASHTO (2014) simply uses its inelastic FLB 

expressions into the elastic FLB range for the minor extent that bf/2tf can potentially exceed rf 

for Fyc > 90 ksi. This is justified given the approximations invoked in determining the flange 

local buckling resistance.  

 

Also, as discussed in the following, the webs in I-section members are defined as either compact, 

noncompact or slender under flexure. The maximum potential resistance Mmax is equal to the 

plastic moment capacity Mp for members with a compact web. However, the most economical 

welded composite I-girders in negative bending, and welded noncomposite I-girders in positive 

or negative bending, rarely have compact webs. In fact, welded I-section webs are often slender 

under flexural compression. The Mmax of slender web members is generally smaller than the 

compression flange yield moment Myc due to web bend buckling and shedding of load to the 

compression flange. The detailed influences of the web slenderness on Mmax are discussed in 

Section 5.3.5 of this module.  

 

All of the above definitions or classifications focus on separate member characteristics, i.e., the 

unbraced length or LTB slenderness, the compression flange slenderness and the web 

slenderness. This is slightly different from the classification of composite I-section members in 

positive flexure, where the entire cross-section is defined as either compact or noncompact. It is 

also somewhat different from prior AASHTO Specifications, which focused on the classification 

of entire cross-sections. The AASHTO (2014) emphasis on these separate member 

characteristics is consistent with the approaches in AISC (1999, 2005 and 2010).  

 

The main LTB and FLB provisions in AASHTO (2014) Article 6.10.8.2 specify the flexural 

resistances in terms of elastically computed compression flange stresses. Also, the equations in 

this article are targeted specifically at the capacity of slender-web I-section members. The 

Engineer is allowed to use these equations conservatively for all I-section member types as a 

simplification. This simplification recognizes the fact that, with the exception of rolled I-section 

members, bridge I-sections predominantly have slender or nearly slender webs. However, 



 115 

Appendix A6 of AASHTO (2014) specifies comparable and more liberal equations for I-section 

members in negative bending and noncomposite I-section members that have noncompact or 

compact webs. The Appendix A6 equations are a direct extension of the equations in Article 

6.10.8.2, and with minor exceptions, are fundamentally the same as the equations for design of 

noncompact- and compact-web noncomposite I-section members in AISC (2010). AASHTO 

(2014) Articles C6.10.6.2.3 and C6.10.8.1.1 point out that the Engineer should give strong 

consideration to utilizing the provisions of Appendix A6 for I-sections with compact or nearly 

compact webs in straight bridges. In addition, the AASHTO (2014) equations in Article 6.10.8.2 

are with minor exceptions fundamentally the same as the AISC (2010) flexural resistance 

equations for slender-web I-section members. White (2008) details the minor differences 

between the AASHTO (2014) and AISC (2010) provisions. Several of the most significant of 

these differences are outlined in the following Sections. 

 

The Appendix A6 equations are expressed in terms of the section bending moment. The rationale 

for use of the flange stress format in Article 6.10.8.2 and the moment format in Appendix A6 is 

essentially the same as that discussed in Section 5.3.4 of this module for noncompact and 

compact composite I-sections in positive bending.  

 

The coordinates of the anchor points shown in Figure 60 are (Lp, Mmax) and (Lr, RbFyrSxc) for 

LTB and (pf, Mmax) and (rf, RbFyrSxc) for FLB in terms of the bending moment. The specific 

terms associated with these anchor points are discussed in detail in the following Sections. Also, 

since the noncompact bracing limit, Lr, and the noncompact compression flange slenderness 

limit, rf, are associated with the theoretical elastic buckling equations, the base elastic buckling 

formulas are also presented. The following discussions are targeted at providing an overall 

conceptual understanding of the AASHTO (2014) flexural resistance calculations. AASHTO 

(2014) Appendix C6 provides detailed flowcharts that capture the complete application of the 

flexural design provisions for I-section members. The Engineer is encouraged to consult these 

flowcharts for an efficient organization of the corresponding calculations. White (2008) gives 

similar flowcharts that emphasize the unified nature of the AASHTO (2014) Article 6.10.8 and 

Appendix A6 equations. 

 

5.3.5.2 Maximum potential flexural resistance, Mmax or Fmax  

 

5.3.5.2.1 Compact- and noncompact-web sections 

 

As noted in the above, Mmax is equal to the cross-section plastic moment capacity Mp for 

members with compact webs. However, for members with noncompact or slender webs, the 

ordinate of Anchor Point 1, Mmax or Fmax, decreases as a function of the web slenderness 2Dc/tw. 

For noncompact-web members, Mmax decreases linearly as a function of 2Dc/tw between the 

compact- and noncompact-web limits pw and rw, as shown in Figure 61. The noncompact-web 

limit is given by the equation 

 

5.7rw

yc

E

F
   (5.3.5-1) 

 (AASHTO 6.10.6.2.3-1, A6.2.1-3 & A6.2.2-3, AISC Table B4.1b) 
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This limit is the value of 2Dc/tw at which an I-section is nominally able to develop Mmax = RhMyc, 

or a compression flange yield stress Fmax = RhFyc, just prior to the onset of local web buckling in 

flexure, referred to as web bend buckling. The theoretical background to this equation is 

discussed subsequently in Section 5.3.10 of this module. AASHTO (2014) defines the compact-

web limit as  
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  (5.3.5-2) 

 (AASHTO A6.2.2-6 & 6.2.1-2, AISC Table B4.1b) 

 

Equation (2) accounts for the larger demands on the web required to develop the cross-section 

plastic moment in singly-symmetric cross-sections. The term Dc/Dcp in the numerator converts 

this equation from its fundamental form associated with the plastic depth of the web in 

compression, Dcp, to the form associated with the elastic depth of the web in compression, Dc. 

This is necessary so that a consistent web slenderness parameter, 2Dc/tw, may be employed for 

the linear interpolation between the anchor points (pw, Mp) and (rw, RhMyc) in Figure 61. For a 

homogeneous doubly-symmetric I-section with Dc/Dcp = 1.0 and an assumed Mp/My = 1.12, Eq. 

(2) reduces to the limit in Eq. (5.3.3-1). The requirement of pw(Dc) < rw in Eq. (2) conservatively 

defines the compact-web limit as pw(Dc) = rw for singly-symmetric sections with proportions 

such that the section is classified as slender based on the elastic depth of the web in compression 

and Eq. (1), but as compact based on the plastic depth of the web in compression Dcp and the 

fundamental form of Eq. (2) with the ratio Dc/Dcp removed from its numerator. This type of 

cross-section is possible in negative bending regions of continuous-span I-girders having a 

significantly larger bottom compression flange. White (2008) shows a practical cross-section for 

which pw(Dc) = rw.  

Mmax

Mp

RhMyc

pw(Dc) rw 2Dc /tw

Compact Noncompact Slender

RpcMyc

(Rb = 1,

usually but 

not always 

Rpc > Rh)

RbRhMyc

 
 

Figure 61  Variation of Mmax for FLB and LTB versus the web slenderness w = 2Dc/tw. 
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The linear interpolation between (pw, Mmax = Mp) and (rw, Mmax = RhMyc) shown in Figure 61 is 

represented by the web plastification factor, Rpc, in AASHTO (2014) (and in AISC (2010)). This 

parameter is simply equal to the cross-section shape factor, Mp/Myc, for a compact-web section. It 

may be considered as an effective shape factor that varies linearly between Mp/Myc and Rh for 

noncompact-web sections. One should note that Rpc is greater than one in most situations for 

girders with noncompact webs. However, Myc can be greater than Mp for some extreme singly-

symmetric sections having a large flange in compression and a neutral axis close to the 

compression flange (this is because earlier yielding in tension is generally neglected in the 

calculation of Myc).  In these cases, Rpc can be less than one.  The resistance is more likely to be 

governed by tension flange yielding (TFY) in these situations.  

 

5.3.5.2.2 Slender-web sections  

 

For 2Dc/tw > rw, the web is defined as slender and Mmax is given by the expression RbRhFycSxc as 

shown in Figure 61 (i.e., Fmax = RbRhFyc). In this case, Rb < 1 accounts for the reduction in Mmax 

or Fmax due to shedding of flexural stresses to the compression flange associated with the post-

bend buckling response of the web. The base AASHTO (2014) web load-shedding strength 

reduction factor is written as  
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 (AASHTO 6.10.1.10.2-3, AISC F5-6) 

 

where awc = 2Dctw/Afc and Afc is the area of the compression flange (including cover plates, etc. as 

applicable). This equation is the more general and accurate form of two equations developed by 

Basler and Thurlimann (1961). For composite sections in negative bending, AASHTO (2014) 

Article 6.10.1.10.2 specifies the use of the depth of the web in compression Dc for the section 

consisting of the steel girder plus the longitudinal deck reinforcement within the slab effective 

width in determining Rb by Eq. (3). 

 

If a more refined calculation is desired for Rb, AASHTO (2014) Article C6.10.1.10.2 suggests 

the use of Fnc1 for Fyc in the rw term of Eq. (3), where Fnc1 is the smaller of:  

 

1.The nominal flexural resistance of the compression flange Fnc computed assuming Rb and 

Rh are both equal to one, or  

 

2.The elastic stress in the compression flange when the tension flange reaches a nominal 

elastic stress of RhFyt.  

 

This accounts for the lesser influence of web post-bend buckling for members that reach their 

maximum resistance at a compression flange stress smaller than RbRhFyc. Prior AASHTO 

Specifications have specified the substitution of the factored applied stress fbu in similar 

equations for Rb. This gives a value for the strength reduction factor that is acceptable but is 

smaller than the actual Rb corresponding to the maximum flexural strength condition. More 

importantly, this practice can lead to subsequent difficulties in load rating, since the flexural 

resistance becomes a function of the applied load. AASHTO (2014) has eliminated dependencies 
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of the calculated flexural resistance on the applied load wherever possible to mitigate subsequent 

load rating difficulties. The calculation of Dc in determining Rb by Eq. (3) for composite sections 

in negative bending is another area where a dependency of the resistance on the applied loading 

has been eliminated. Since transversely-stiffened I-girders must satisfy Eq. (5.3.2-1), the 

differences in Rb based on the simple use of Fyc versus Fnc1 in the rw
 
term of Eq. (3) are typically 

only a few percent for these member types. Therefore, the use of Fyc in Eq. (3) is recommended 

for routine practice.  

 

AASHTO (2014) Article 6.10.1.10.2 gives a separate equation for awc that conservatively 

approximates the beneficial effect of the concrete composite deck for calculation of Rb in 

noncompact composite sections in positive bending. AASHTO (2014) Article C6.10.1.10.2 

states that Rb may be taken equal to one for composite sections in positive bending that satisfy 

the proportioning limits of Article 6.10.2.2 as well as the ductility limit of Eq. (5.3.3-4), as long 

as Eq. (5.3.2-1) is also met such that longitudinal stiffeners are not required. Composite cross-

sections in positive bending that satisfy these limits generally have Rb values equal to or close to 

1.0. However, composite longitudinally-stiffened sections in positive bending, which are 

generally classified as noncompact sections based on the second requirement listed in Section 

5.3.3(A) of this module, will sometimes have Rb values smaller than 1.0.  

 

The calculation of Rb for longitudinally-stiffened sections in AASHTO (2014) hinges on an 

explicit check of whether web bend buckling is prevented up to the development of the 

compression flange yield strength Fyc. Longitudinally-stiffened sections that satisfy the limit 
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  (AASHTO 6.10.1.10.2-1) 

where k is the local bend-buckling coefficient for webs with longitudinal stiffeners specified in 

Article 6.10.1.9.2, are able to develop the compression flange yield strength prior to nominal 

web bend buckling. In these cases, Rb is specified equal to 1.0. However, for longitudinally-

stiffened sections that exhibit bend buckling at smaller compression flange stress levels, Rb must 

be calculated from Eq. (3). Equation (3) does not account for any influence of the longitudinal 

stiffeners on the load shedding from the post-buckled longitudinally-stiffened web. This is 

because the AASHTO (2014) Article 6.10.11.3 requirements for longitudinal stiffeners only 

target the development of the web bend buckling resistance. The longitudinal stiffener 

requirements generally are not sufficient to hold a line of near zero lateral deflection in a post-

buckled web plate. The AASHTO (2014) approach of not including any influence of the 

longitudinal stiffeners in the calculation of Rb gives a practical slightly conservative calculation 

of the flexural resistance for cases where Eq. (4) is not satisfied. Proportioning of longitudinally-

stiffened webs such that Eq. (4) is satisfied, or restricting the strength of longitudinally-stiffened 

sections to the web bend buckling resistance, is overly conservative relative to traditional 

practice. AISC (2010) does not address the design of longitudinally-stiffened I-girders. 

 

5.3.5.2.3 Hybrid-web strength reduction factor  

 

As noted above, the term Rh is the hybrid web strength reduction factor. This factor accounts for 

the reduced contribution of the web to the nominal flexural resistance at the first yielding of any 
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flange element, due to earlier yielding of a lower strength hybrid web. In AASHTO (2014), this 

factor is defined by the single equation,  
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 (5.3.5-5) 

 (AASHTO 6.10.1.10.1-1) 

 

for all types of composite and noncomposite members, where 

 

 = 2Dntw /Afn (5.3.5-6) 

 (AASHTO 6.10.1.10.1-2) 

 

 = smaller of Fyw/fn and 1.0 

 

Afn = sum of the flange area and the area of any cover plates on the side of the neutral axis 

corresponding to Dn. For composite sections in negative bending, the area of the 

longitudinal reinforcement may be included in calculating Afn for the top flange.  

 

Dn = larger of the distances from the elastic neutral axis of the cross-section to the inside 

face of either flange. For sections where the neutral axis is at the mid-depth of the 

web, the distance from the neutral axis to the inside face of the flange on the side of 

the neutral axis where yielding occurs first.  

 

fn = for sections where yielding occurs first in the flange, a cover plate or the 

longitudinal reinforcement on the side of the neutral axis corresponding to Dn, the 

largest of the specified minimum yield strengths of each component included in the 

calculation of Afn. Otherwise, the largest of the elastic stresses in the flange, cover 

plate or longitudinal reinforcement on the side of the neutral axis corresponding to 

Dn at first yield on the opposite side of the neutral axis.  

 

These definitions account for all possible combinations associated with different positions of the 

elastic neutral axis and different yield strengths of the top and bottom flange elements. Equation 

(5) is adapted from a fundamental strength reduction equation, originally derived for doubly-

symmetric I-sections (ASCE 1968; Schilling 1968; Frost and Schilling 1964), to handle singly-

symmetric and composite sections. This is accomplished by focusing on the side of the neutral 

axis where yielding occurs first. This side of the neutral axis has the most extensive web yielding 

prior to first yielding of any flange element. All of the flange elements on this side of the neutral 

axis are conservatively assumed to be located at the edge of the web. The original equation is 

also adapted by assuming that the shift in the neutral axis due to the onset of web yielding is 

negligible. These assumptions are similar to those used in the development of a separate Rh 

equation for composite members in prior AASHTO and AISC Specifications. AISC (2010) does 

not address hybrid I-section members to simplify its design rules.  

 

In lieu of the use of Eq. (5), AASHTO (2014) Article C6.10.1.10.1 allows the Engineer to 

determine Rh directly from an iterative strain-compatibility analysis. However, since the 



 120 

computed Rh values from Eq. (5) are typically close to 1.0, this refined calculation will typically 

provide little benefit.  

 

5.3.5.2.4 Other considerations 
 

For sections with 2Dc/tw < rw, AASHTO (2014) Articles 6.10.6.2.3 and A6.1 apply two 

restrictions on the use of Mmax values larger than RhMyc (Fmax > RhFyc). If the compression flange 

of noncomposite I-sections is substantially smaller than the tension flange such that  

 

Iyc / Iyt < 0.3 (5.3.5-7) 

 (AASHTO 6.10.6.2.3-2 & A6.1-2) 

 

the Engineer is required to calculate the flexural resistance conservatively based on the slender-

web member equations of Article 6.10.8. This restriction guards against the use of extremely 

monosymmetric sections where analytical studies indicate a significant loss in the influence of 

the St. Venant torsional rigidity GJ on the LTB resistance due to cross-section distortion. If the 

flanges are of equal thickness, this limit is equivalent to bfc < 0.67bft. AISC (2010) requires the 

use of J = 0 in the calculation of Lr and the elastic LTB resistance for singly-symmetric I-

sections that satisfy Eq. (7), but expressed as Iyc/Iy < 0.23; otherwise, AISC (2010) permits the 

calculation of Mmax as shown in Figure 61 for compact- and noncompact-web members. Based 

on the results from White and Jung (2007), the AASHTO restriction is considered more prudent.  

Also, AASHTO Article 6.10.6.2.3 requires the use of the slender-web member equations and 

disallows the use of Appendix A6 for all bridges with kinked (chorded) continuous or 

horizontally curved segments. As noted previously in Section 3 of this module, this restriction is 

based on the limited information about the influence of cross-section partial yielding on the 

response of curved bridge structural systems. The component studies on which the AASHTO 

(2014) curved I-girder resistances are based (White and Jung 2008; White and Kim 2008; White 

et al. 2008) fully support the use of Appendix A6 as well as Article 6.10.7.1 for composite and 

noncomposite curved I-girders. The studies by Beshah and Wright (2010) and Jung and White 

(2010) support the use of these Articles for curved I-girder bridges. However, as noted in Section 

3, further studies are needed to address the influence of partial cross-section yielding on 

continuous-span curved I-girder bridges. 

 

5.3.5.3 Tension flange yielding (TFY) resistance 

 

Prior to considering the other parameters illustrated in Figure 60, it is useful to discuss the 

definition of the AASHTO (2014) TFY resistance. The AASHTO TFY resistance varies with the 

web slenderness in a fashion similar to the variation of Mmax and Fmax. However, the Rb factor is 

not applied in determining the TFY resistance of slender-web sections since the tension flange 

stress is not increased significantly by the shedding of the web compressive stresses (Basler and 

Thurlimann 1961). Figure 62 illustrates the variation of the TFY resistance as a function of the 

web slenderness 2Dc/tw. AASHTO (2014) Article 6.8.10.3 defines the TFY resistance of slender-

web sections as the nominal first yielding of the tension flange reduced by any hybrid web 

effects, RhFyt in terms of the tension flange stress, or RhFytSxt = RhMyt in terms of the member 

bending moment. However, Articles A6.2 and A6.3 define a TFY resistance that varies linearly 
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from RhMyt to the section plastic moment Mp as the web slenderness 2Dc/tw varies from rw to 

pw(Dc). Finally, for compact-web sections, the TFY resistance is equal to Mp.  

 

Mn(TFY)

Mp

RhMyt

pw(Dc) rw 2Dc /tw

Compact Noncompact Slender

RptMyt

(usually but 

not always 

Rpt > Rh)

 
 

Figure 62  Variation of the tension flange yielding (TFY) resistance Mn(TFY) versus the web 

slenderness w = 2Dc/tw. 

 

Similar to the web plastification factor Rpc used in defining Mmax for LTB and FLB of 

noncompact- and compact-web I-section members, AASHTO (2014) specifies a web 

plastification factor Rpt that corresponds to the TFY limit state. Similar to Rpc, Rpt is simply equal 

to the cross-section shape factor Mp/Myt for compact-web sections, and it may be considered as 

an effective shape factor for noncompact-web sections. Also, similar to Rpc, Rpt can be less than 

one for extremely monosymmetric I-sections, basically sections that have a significantly larger 

tension flange causing the neutral axis to be very close to the tension flange (in these sections, 

Myt can be greater then Mp due to the neglect of earlier yielding in compression). However, in 

these cases, Rpc will be greater than Rh and the LTB or FLB resistance equations will usually 

govern.   

 

For sections in which Myt > Myc, TFY never governs and does not need to be checked.  

 

5.3.5.4  Compact bracing limit, Lp  

 

AASHTO (2014) specifies the equation  
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 (AASHTO 6.10.8.2.3-4 & A6.3.3-4) 

 

as the compact bracing limit for all types of composite I-section members in negative bending 

and for all types of noncomposite I-section members. This equation is based on extensive 

analysis of experimental data by Yu and Sause (2002), White and Jung (2008) and White and 
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Kim (2008). These studies demonstrate that the inelastic LTB resistance is represented 

accurately using this single equation, with no variation in Lp as a function of web slenderness, 

etc. other than via the radius of gyration rt, combined with the variable expressions for Mmax or 

Fmax discussed in Section 5.3.5 of this module. The radius of gyration in Eq. (8) can be calculated 

in all cases using the equation  
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 (5.3.5-9) 

 (ASHTO 6.10.8.2.3-9 & A6.3.3-10) 

 

This equation is precisely equal to the radius of gyration of the compression flange plus one-third 

of the depth of the web in compression. The web area term Dctw in Eq. (9) accounts for the 

destabilizing effect of the compression in the web on the member lateral-torsional stability.  

 

In prior Specifications, the Lp limit has been based on different radii of gyration for different 

types of sections, including rt, the radius of gyration of solely the compression flange itself about 

the cross-section y-axis, ryc, and the radius of gyration of the complete cross-section about its y 

axis, ry. The radius of gyration ryc is in general not appropriate because it neglects the 

destabilizing effect of the web compression. Also, the radius of gyration ry is not appropriate for 

singly-symmetric and composite I-section members since it does not properly account for the 

influence of the cross-section monosymmetry on the LTB response. The radius of gyration rt 

provides the best overall characterization for all I-section types not only within the context of Eq. 

(8), but also within the elastic LTB calculations discussed in Section 5.3.5 of this module. This 

statement is based on the simplicity of the equations as well as the accuracy of the predictions 

relative to experimental and refined analytical resistances. 

 

Equation (8) generally gives somewhat smaller Lp values than in prior AISC and AASHTO 

Specifications. However, for slender-web members, if Eq. (8) is substituted into the original 

CRC based expression for the LTB resistance suggested by Basler and Thurlimann (1961) and 

summarized by Cooper et al. (1978), a strength of 0.97My is obtained for members with Rb and 

Rh equal to one. If Lp/rt from Eq. (8) is substituted as an equivalent slenderness ratio into the 

column strength Eqs. (5.2.1-4) and (5.2.1-1a), a resistance of 0.96My is obtained.  

 

The more liberal Lp equations in previous AASHTO and AISC Specifications are based largely 

on the studies by Yura et al. (1978), where the Lp limit  

 

300
1.76

y

p y

ycy

r E
L r

FF
   (5.3.5-10) 

 

was recommended for doubly-symmetric steel I-section members with compact webs and 

compact flanges. However, the original study by Galambos and Ravindra (1976) recommended  
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for these member types. Table 1 of Yura et al. (1978) reports the same resistance factors  based 

on predictions of experimental results as in Galambos and Ravindra (1976), although Yura et al. 

(1978) propose different Lp equations. The correct Lp expression corresponding to the  factors in 

Yura et al. (1978) Table 1 is Eq. (11). Furthermore, the ratio rt /ry ranges from 1.12 to 1.28 for 

rolled wide-flange sections. Therefore, in terms of rt, Eq. (11) may be expressed as 

 

1.10 1.26p t t

yc yc

E E
L r to r

F F
  (5.3.5-12) 

 

Cooper et al. (1978) specified  
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in their final recommendations for load and resistance factor design of slender-web I-section 

members. These recommendations were subsequently changed to  
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for slender-web I-section members (referred to as plate girders) in AISC (1986), apparently to 

match the coefficient in Eq. (10) and to produce comparable compactly-braced results to the 

AISC (1978) Allowable Stress Design (ASD) equations. AISC (1986) also specified Eq. (10) for 

singly-symmetric I-section members, but AISC (1993 & 1999) subsequently changed the Lp limit 

for these members to  
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E
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  (5.3.5-15) 

 

As discussed by White and Jung (2003b), ryc can be substantially larger than ry and rt. Therefore, 

Eq. (15) liberalizes the AISC (1993 & 1999) Lp equations for singly-symmetric I-section 

members even further. The prior AASHTO equations for Lp were largely adopted from AISC, 

using the coefficient of 1.76 but with radii of gyration that in some cases differed from the AISC 

equations.  

 

White and Jung (2008) show that Eq. (8) with a coefficient of 1.1 gives a nearly uniform 

reliability index throughout the compactly- and noncompactly-braced ranges for all types of I-

section members. The results using a coefficient of 1.0 in Eq. (8) are essentially the same as 

those using a coefficient of 1.1 (the maximum difference in the resistance predictions is 

approximately one percent). AISC (2010) uses Eq. (8) with a coefficient of 1.1 except for 
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doubly-symmetric compact-web I-section members, where Eq. (10) is retained from AISC 

(1986, 1993 & 1999). White and Chang (2007) show that Eq. (8) with a coefficient of 1.1 gives 

resistances are that are larger than the traditional AISC ASD values for most compact-web I-

section members. The maximum difference in the predictions using Eq. (10) versus Eq. (8) with 

a coefficient of 1.1 is approximately six percent.  
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Figure 63  Comparison of rolled beam I-section uniform bending test results from Dux and 

Kitipornchai (1983) and Wong-Chung and Kitipornchai (1987) to the AASHTO (2014) and 

AISC (2010) flexural resistances (Fyc = 41.3 and 42.5 ksi, LTB effective length factors K = 

0.66 and 0.91). 

 

Figure 63 compares the predictions by AASHTO (2014) and AISC (2010) for a set of rolled I-

beam tests in uniform bending conducted by Dux and Kitipornchai (1983) and Wong-Chung and 

Kitipornchai (1987). Figure 64 shows the AASHTO and AISC predictions for a suite of 

noncompact-web member tests in uniform bending conducted by Richter (1998). The unbraced 

lengths Lb are modified using the Nethercot and Trahair (1976) effective length factor K 

(discussed subsequently in Section 5.3.5 of this module) for the Dux and Kitipornchai (1983) and 

Wong-Chung and Kitipornchai (1987) tests. The Nethercot and Trahair (1976) K factors are 

equal to 1.0 in all cases for the Richter (1998) tests. 
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Figure 64  Comparison of compact-flange noncompact-web welded member test results for 

uniform bending, from Richter (1998), to the AASHTO (2014) and AISC (2010) flexural 

resistances (bfc/2tfc = 8.0 to 8.1, D/tw = 110, D/bfc = 3.6, Fyc = 48.4 ksi. 

 

Equation (8) provides the best combination of simplicity (one equation that applies to all I-

section members) and accuracy (near uniformity of the reliability index throughout the 

compactly- and noncompactly-braced ranges for all I-section members). However, the 

differences in the results using the various incarnations of Lp are relatively small with the 

exception of the application of Eq. (15) to singly-symmetric I-section members. The use of rt in 

Eq. (8) facilitates the assessment of LTB in composite I-section members subjected to negative 

bending, since rt depends only on the characteristics of the portion of the cross-section subjected 

to flexural compression.  

 

5.3.5.5 Compact flange slenderness limit, pf 

 

AASHTO (2014) and AISC (2010) define the compact-flange slenderness limit by the equation 

 

0.38pf

yc

E

F
    (5.3.5-16) 

 (AASHTO 6.10.8.2.2-4 & A6.3.2-4, AISC Table B4.1b) 

 

for all types of I-section members. This equation is identical to the compact-flange limit in AISC 

(1989 & 1999) and is based largely on the original research by Lukey et al. (1969) as well as the 

subsequent studies by Johnson (1985).  

 

5.3.5.6 Compression flange stress at the nominal onset of inelastic buckling, Fyr  

 

AASHTO (2014) specifies Fyr = 0.7Fyc with the exception of (1) highly monosymmetric 

compact-web and noncompact-web cross-sections with the larger flange in compression, where 

the neutral axis is so close to the compression flange that nominal tension flange yielding occurs 

prior to reaching a stress of 0.7Fyc at the compression flange and (2) hybrid web members in 

general where Fyw < 0.7Fyc. To address these cases, AASHTO (2014) Articles A6.3.2 and A6.3.3 

specify 
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 (5.3.5-17) 

 

The product FytSxt in the second term of this equation is the moment corresponding to nominal 

yielding at the tension flange. This value, divided by the section modulus to the compression 

flange, Sxc, is the compression flange stress corresponding to the onset of nominal yielding at the 

tension flange. The third term interprets the web yield stress as the limit corresponding to the 

onset of significant inelastic stability effects for hybrid sections with unusually low values for 

Fyw relative to Fyc. In extreme cases where FytSxt/Sxc or Fyw is less than 0.5Fyc, AASHTO (2014) 

uses a minimum value of Fyr = 0.5Fyc.  

 

For slender-web members, AASHTO (2014) Article 6.10.8.2 specifies 

 

 min 0.7 , 0.5yr yc yw ycF F F F   (5.3.5-18) 

 

That is, the second-term in Eq. (17) is not considered. This simplification is possible because the 

TFY resistance of slender-web members is defined as the nominal first yielding of the tension 

flange reduced by any hybrid web effects, RhFyt. However, since the TFY resistance for compact- 

and noncompact-web sections is generally larger than RhMyt, Eq. (17) is necessary to avoid 

significant violation of the assumption of elastic member behavior when using the AASHTO 

equations based on elastic LTB or FLB.  

 

The limit Fyr = 0.7Fyc is based on LTB and FLB experimental test data (White and Jung 2008; 

White and Kim 2008). This is a significant liberalization relative to the implicit use of Fyr = 

0.5Fyc for slender-web members in prior Specifications.  

 

5.3.5.7 Elastic LTB stress, Fe.LTB 

 

The AASHTO (2014) elastic LTB resistances are based on a single equation applicable for all 

types of I-section members. This equation gives the exact beam-theory solution for LTB of 

doubly-symmetric I-section members, and it gives an accurate to somewhat conservative 

approximation for singly-symmetric noncomposite members and composite members in negative 

bending (White and Jung 2003 a & b; White 2008). This equation may be written in terms of the 

compression flange flexural stress as 
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 (AASHTO A6.3.3-8, AISC F2-4 & F4-5) 

 

where  

2 xcS h
X

J
  (5.3.5-20) 
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rt is approximately the radius of gyration of the compression flange plus one-third of the area of 

the web in compression, Sxc is the elastic section modulus to the compression flange, h is the 

distance between the centroids of the flange elements, and J is the St. Venant torsion constant of 

the steel I-section. Equation (20) is a simple ratio of the bending and torsional efficiencies of the 

cross-section. For a doubly-symmetric I-section, X
2
  2Ix /J. This parameter ranges from 13 to 

2500 for the complete set of ASTM A6 W shapes.  

 

(Note that AASHTO (2014) uses the symbol Fcr rather than Fe.LTB in Eq. (19). However, for 

slender-web members, AASHTO (2014) multiplies the beam-theory elastic LTB stress Fe.LTB, 

with J taken equal to zero, by the web load shedding parameter Rb to obtain the nominal flange 

stress at elastic LTB, i.e., Fcr = RbFe.LTB. The notation Fe.LTB is used in this module for 

consistency with the notation for column buckling as well as to distinguish the beam-theory 

based Fe.LTB from the nominal elastic LTB resistance for slender-web members Fcr = RbFe.LTB.) 

 

The radius of gyration rt may be calculated exactly as  
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 (AISC F2-7) 

 

for doubly-symmetric I-sections (White and Jung 2003a). AISC (2010) gives this equation, but 

refers to the corresponding radius of gyration as rts, to avoid its potential erroneous use for 

singly-symmetric I-section members. Alternately, rt may be calculated generally for any 

rectangular flange I-section as 
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 (5.3.5-22) 

 (AASHTO C6.10.8.2.3-1, AISC F4-10) 

 

where d is the total depth of the member, D is the depth of the web, and Afillet is the area of each 

of the web-to-flange fillets (White and Jung 2003a). (Note that Afillet is generally taken equal to 

zero for welded I-section members.) If one assumes d  h  D and Afillet  0, Eq. (22) reduces to 

Eq. (9) which is precisely the equation for the radius of gyration of the compression flange plus 

one-third of the depth of the web in compression. Equation (22) gives results that are within one 

percent of the exact Eq. (21) for all rolled I-sections. Due to compensating effects within the 

approximation of Eq. (22) by Eq. (9), Eq. (9) also tends to give an accurate but slightly 

conservative approximation of Eq. (21) for general doubly-symmetric I-shapes.  

 

For column-type I-sections with D/bfc  1, D/tw less than about 50 and compact flanges, the 

second term under the radical in Eq. (19) tends to be significantly larger than one. As such, it 

would be quite uneconomical to discount this major contribution to the resistance to obtain a 

simpler form for Eq. (19). However, in situations involving beam- or girder-type I-sections with 

D/bfc greater than about two and bfc/2tfc near the compact-flange limit pf or larger, the 

contribution from the second term in Eq. (19) is relatively small (White and Jung 2003a).  
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For slender-web members, the contribution from the radical in Eq. (19) is neglected altogether, 

due to the reduction in the effective St. Venant torsional stiffness associated with web 

distortional flexibility (i.e., the deformation of the web into an S shape upon twisting of the 

cross-section, and the corresponding reduction in the twist rotation of the flanges) (White and 

Jung 2007). In this case, Eq. (19) reduces to the form  
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 (AASHTO 6.10.8.2.3-8, AISC F5-4) 

 

used traditionally by AISC and AASHTO for slender-web members. Equation (23) is multiplied 

by the web load shedding strength reduction factor, Rb, to obtain the elastic LTB flexural 

resistance in terms of the compression flange stress for slender-web members.  

 

5.3.5.8 Noncompact bracing limit, Lr 

 

The noncompact bracing limit Lr is obtained by equating the base elastic LTB resistance for 

uniform bending (Cb = 1) to the compression flange stress at the nominal onset of yielding, Fyr. 

Equation (19) results in the following succinct expression for the noncompact lateral brace 

spacing, 
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 (AASHTO A6.3.3-5, AISC F2-6 & F4-8) 

 

applicable for all types of compact- and noncompact-web I-section members, whereas Eq. (23) 

gives  
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 (AASHTO 6.10.8.2.3-5, AISC F5-5) 

 

White and Jung (2003b) give a closed-form alternative expression to Eq. (24) for compact- and 

noncompact-web singly-symmetric I-sections, based on the rigorous application of open-section 

thin-walled beam theory. Unfortunately, this equation is significantly longer than Eq. (24). Also, 

due to the larger effects of web distortion in singly-symmetric members, the rigorous beam-

theory equation does not necessarily give a better representation of the physical buckling 

resistance (White and Jung 2007).  

 

5.3.5.9 Elastic FLB stress, Fe 

 

The elastic plate local buckling equation defined previously by Eq. (5.2.4-1) is also the base 

equation for the I-section FLB resistances in AASHTO (2014). Furthermore, the FLB 



 129 

coefficients kc defined by Cases 1 and 2 of Table 5 are employed for noncompact- and compact-

web built-up and rolled I-sections in flexure. However, for slender-web I-section members, 

Article 6.10.8.2.2 implicitly assumes kc = 0.35 as an accurate to conservative simplification. As 

noted in Section 5.2.4 of this module, the FLB coefficient for simply-supported edge conditions 

at the web-flange juncture is kc = 0.43. Therefore, smaller values of kc indicate that the web is 

tending to destabilize the flange. The equation for kc in Case 1 of Table 5 was developed 

originally by equating the results from the AISC LRFD (1993) resistance equations to measured 

experimental strengths for a number of tests in which the flexural resistance was governed by 

FLB, then back-solving for kc (Yura 1992). The data used in these developments was 

predominantly from Johnson (1985). White and Jung (2008) and White and Kim (2008) discuss 

the correlation of the AASHTO (2014) and AISC (2010) equations with a larger updated set of 

experimental test results. Case 1 of Table 5 may be considered as a simple but reasonable 

approximate lower-bound value for the FLB coefficient for general built-up I-section members.  

 

5.3.5.10 Noncompact flange slenderness limit, rf 

 

Similar to the calculation of Lr, the noncompact flange slenderness limit rf is obtained by 

equating the elastic FLB stress given by Eq. (5.2.4-1) to the compression flange stress at the 

nominal onset of yielding, Fyr. The resulting equation is 

 

0.95 /rf c yrk E F   (5.3.5-26) 

 (AASHTO A6.3.2-4, AISC Table B4.1a) 

 

By substituting the implicitly assumed value of kc = 0.35 into this equation, one obtains  

 

0.56 /rf yrE F   (5.3.5-27) 

 (AASHTO 6.10.8.2.2-5) 

 

for the noncompact flange slenderness limit within the main AASHTO (2014) provisions.  

 

5.3.5.11 Moment gradient modifier, Cb 

 

As illustrated previously in Figure 60, the effect of any variation in the moment along the 

unbraced length is accounted for in AASHTO (2014) and AISC (2010) via the moment gradient 

modifier Cb. The Cb
 
modifier has a base value of 1.0 when the moment and the corresponding 

compression flange major-axis bending stresses are uniform along the length between the brace 

points. Furthermore, Cb may be conservatively taken equal to 1.0 for all cases, with the exception 

of: 

 

 Situations involving significant top flange loading either on unbraced cantilevers or on 

members with no intermediate bracing in the entire span, and  

 General unbraced cantilevers with less than essentially rigid warping restraint at their 

fixed end due to flexible end connections or continuity with a flexible back-span 

(Ziemian 2010).  
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(For cases involving flexure in members other than in horizontal (i.e., in-plan) framing, the “top” 

flange may be considered as the flange opposite to the direction of the applied loads causing the 

major-axis bending, assuming that all the applied loads are in the same direction. Also, the 

“vertical” supports may be taken as the supports corresponding to the reactions associated with 

major-axis bending.)  

 

The above exceptional cases are addressed after discussion of the more common situations. 

Whenever both ends of a cantilevered girder are prevented from twisting (by end cross-frames or 

diaphragms), the behavior is effectively the same as that of an ordinary span with vertical 

supports and twisting restrained at both ends. Therefore, if one or more intermediate braces are 

provided within either an ordinary span or a cantilever span in which the ends are prevented from 

twisting, load height effects do not need to be considered in the calculation of Cb. Helwig et al. 

(1997) discuss mitigating factors regarding load-height effects that justify this simplification. 

Cases in which the ends of a span are not prevented from twisting require specialized 

consideration regardless of the loading and span type.  

 

For the above “common situations,” AASHTO (2014) and AISC (2010) specify different 

equations for Cb, both of which tend to give accurate to somewhat conservative solutions. AISC 

(2010) specifies the formula 

 

max

max

12.5
3.0

2.5 3 4 3
b m

A B C

M
C R

M M M M
 

  
 (5.3.5-28) 

  (AISC F1-1 & C-F1-3) 

Where 

 

Mmax =  absolute value of the maximum moment in the unbraced segment 

 

MA = absolute value of the moment at the quarter point of the unbraced segment 

 

MB  = absolute value of the moment at the mid-length of the unbraced segment 

 

MC = absolute value of the moment at the three-quarter point of the unbraced segment 

 

Rm  = cross-section monosymmetry parameter 

 

 = 1.0 for doubly-symmetric members 

 

 = 1.0 for singly-symmetric members subjected to single-curvature bending 
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 (5.3.5-29) 

  for singly-symmetric members subjected to reverse-curvature bending. 
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Conversely, AASHTO (2014) Article 6.10.8.2.3 specifies 

 

Cb = 1.0 (5.3.5-30a) 

 (AASHTO 6.10.8.2.3-6) 

 

for members where fmid /f2 > 1 or f2 = 0, and  
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   (AASHTO 6.10.8.2.3-7) 

 

for all other common situations, where 

 

f2  = absolute value of the largest factored compressive major-axis bending stress at either 

end of the unbraced length of the flange under consideration, determined from the 

critical moment envelope value. If the stress is zero or tensile in the flange under 

consideration at both ends of the unbraced length, f2 is taken equal to zero.  

 

fmid = factored major-axis bending stress at the middle of the unbraced length of the flange 

under consideration, calculated from the moment envelope value that gives the largest 

compression at this point, or the smallest tension if this point is never in compression, 

taken as positive in compression and negative in tension.  

 

f1 = fo  (5.3.5-31) 

  (AASHTO 6.10.8.2.3-10) 

 

when the variation in the flange stress between the brace points is concave in shape, and  

otherwise 

 

f1 = 2fmid – f2 > fo  (5.3.5-32) 

  (AASHTO 6.10.8.2.3-11) 

 

fo  =  factored major-axis bending stress at the brace point opposite to the one corresponding to 

f2, calculated from the moment envelope value that gives the largest compression at this 

point in the flange under consideration, or the smallest tension if this point is never in 

compression, taken as positive in compression and negative in tension. 
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Figure 65  Sample cases for calculation of the AASHTO (2014) moment gradient modifier, 

adapted from AASHTO (2014) Article C6.4.10. 

 

Figure 65 shows several sample cases that illustrate the application of the AASHTO procedure. 

The first two cases involve a concave flange stress envelope, that is, |fmid| is smaller than the 

absolute value of the average of f2 and fo. For these cases, f1 is taken equal to fo and the 

application of Eq. (30b) is the same as in prior AASHTO Specifications. However, the second 

two cases involve a convex flange stress envelope. The prior usage of Eq. (30b) results in 

significant unconservative error in many of these cases. For example, the prior AASHTO 

Specifications would use f1 = 0 in the third case, resulting in Cb = 1.75. The above AASHTO 

(2014) equations effectively define f1 as the ordinate of a straight line that goes from f2 at the 

opposite end of the unbraced length through fmid at the mid-length. This definition gives Cb = 

1.30, which is a more accurate representation of analytical solutions (Ziemian 2010). Other 

sample cases are illustrated in AASHTO (2014) Article C6.4.10. 

 

For reverse-curvature bending, both the AISC and AASHTO procedures require the Engineer to 

check LTB considering the base resistance for uniform bending, scaled by the appropriate Cb 

value for each of the member flanges. In the AISC method, one Cb factor is calculated and 
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applied to both flanges. In the AASHTO method, a separate Cb factor is calculated using Eqs. 

(30) to (32) for each flange.  

 

Figure 66 illustrates the Cb calculations for several representative examples by both of the above 

procedures. The results are compared to the exact LTB solutions for the two I-girder cross-

sections shown in Figure 67. An unbraced length-to-depth ratio of Lb/h = 12.5 (Lb = 75 ft) is 

assumed for the first four examples, and an unbraced length-to-depth ratio of 8.0 (Lb = 48 ft) is 

assumed for the last example. The cross-sections shown in Figure 67 are similar in terms of 

behavioral characteristics to those used by Helwig et al. (1997) in their studies. Both cross-

sections satisfy the AASHTO (2014) Article 6.10.2 proportioning requirements and, for the 150 

and 144 ft continuous-span examples in Figure 66 (the fourth and fifth ones), these sections are 

representative of I-girder designs using the AASHTO Specifications. The singly-symmetric 

cross-section shown in Figure 67 is a representative extreme case with Iyc/Iyt = 0.22 (for positive 

bending), which is smaller than the Eq. (7) limit but satisfies Eq. (5.3.2-6).  
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Figure 66  Calculation of Cb by AISC (2010) and AASHTO (2014) for several 

representative design examples. 
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h = 72 in
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Doubly-Symmetric Girder
Singly-Symmetric Girder with 

Iy.top / Iy.bot = 0.22, Iy.top / Iy = 0.18  
 

Figure 67  Cross-sections used in the example Cb calculations. 

 

For demonstration purposes, non-moving loads are assumed in Figure 66 such that the moment 

envelopes and the moment diagrams are the same. Also, noncomposite members are assumed 

since Eq. (28) is not applicable for composite members. In the case of noncomposite members, 

the distribution of the flange stresses along the unbraced length is the same as the distribution of 

the member bending moments. However, for composite members, the distribution of the flange 

stresses and the bending moments are different due to the influence of the separate noncompo-

site, short-term composite and long-term composite loadings, and due to the different effective 

cross-sections in positive and negative bending. Equations (28) and (29) are neither derived nor 

intended for composite I-girders in negative bending.  

 

The exact solutions are determined using the open-section thin-walled beam element in GT-

Sabre (Chang and White 2010). These solutions are determined by analyzing the various 

unbraced lengths as isolated segments assuming torsionally simply-supported end conditions 

(i.e., the flange lateral bending and warping are unrestrained at the ends of the isolated unbraced 

segments, neglecting any continuity effects with adjacent unbraced lengths). The “exact” Cb 

values are calculated as 

 

Cb.exact = Mcr / Mcro  (5.3.5-33) 

 

where  

 

Mcr = buckling moment corresponding to the cross-section with the largest compression stress in 

the flange under consideration for any of the loadings causing non-uniform moment along 

the unbraced length, and 

 

Mcro = buckling moment corresponding to uniform compression in the flange under 

consideration.  
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This is the same as the calculation of Cb.exact by Helwig et al. (1997). The exact Cb values are 

presented only with the AISC (2010) calculations in Figure 66, to simplify the figure. Both the 

AISC and the AASHTO design values are compared to these exact solutions. The number 

contained in the parentheses after the reported design Cb values is the ratio of the design Cb value 

to the relevant Cb.exact. As noted above, for the reverse-curvature bending cases, one Cb value is 

applied to both flanges in the AISC procedure. The LTB strength prediction is governed by the 

flange that has the smallest ratio of Cb / Cb.exact. In the AASHTO procedure, separate Cb values 

are determined for each flange in cases involving reverse curvature bending. The ratio of the 

predicted to exact LTB resistance is governed by the flange that has the smallest ratio of Cb / 

Cb.exact.  

 

For all the unbraced lengths subjected to single-curvature bending in Figure 66, the exact 

solutions are presented only for the doubly-symmetric cross-section to simplify the figure. The 

reader is referred to Helwig et al. (1996) for examples that show that Eq. (28) with Rm = 1 gives 

accurate results for singly-symmetric beams in single-curvature bending. 

 

The following observations can be drawn from the results shown in Figure 66:  

 

 The AASHTO (2014) procedure involves fewer calculations. In cases where the flange 

stress diagram is concave (e.g., the bottom flange stress distribution in the right-most 

unbraced lengths of the two-span continuous beam examples), f1 and f2 in Eqs. (30) are 

simply the flange stresses at the ends of the unbraced segment under consideration. That 

is, f1 and f2 are the same as in the traditional usage of Eq. (30b). In other cases, the 

Engineer only needs to determine the maximum compressive flange stress, f2, and the 

flange stress at the middle of the unbraced length, fmid, from the structural analysis. The 

stress f1 is simply the ordinate of a straight line that goes from f2 at the opposite end of the 

unbraced length through fmid at the mid-length. By using Eq. (32) to define f1 in these 

cases, the accuracy of Eq. (30b) is significantly improved relative to the traditional usage 

of just the end values for f1/f2. Equation (32) gives the same result as the traditional 

definition of f1/f2 when the moment diagram is linear or concave.  

 

 The AASHTO (2014) procedure is more accurate and liberal for the linear moment 

diagram cases. For these cases, Eq. (30b) is still a lower bound compared to analytical 

solutions (Salvadori 1956). Helwig et al. (1997) state that Eq. (28) is quite conservative 

for cases with linear moment diagrams in reverse curvature bending and smaller values of 

Iy.top/Iy. They refer to Kitipornchai et al. (1986) for more accurate estimates of Cb in these 

situations. Equations (30) give accurate to somewhat conservative calculations relative to 

the more complex equations presented by Kitipornchai et al. (1986) for linear moment 

diagrams.  

 

 For longer unbraced lengths, nonlinear moment diagrams (i.e., transverse loading within 

the unbraced length) and single-curvature bending, Eq. (28) often gives more accurate 

estimates than Eqs. (30). For example, for the left-most unbraced length in the first 

continuous-span example of Figure 66, Eq. (28) gives Cb = 1.17 (versus Cb.exact = 1.17) 

while Eqs. (30) give Cb = 1.0. However, for the unbraced lengths in single-curvature 

bending in the second continuous-span example, which still has only two internal brace 
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points, the Cb values calculated using Eq. (30b) are essentially the same as those 

calculated using Eq. (28). Both of the design Cb calculations are only slightly 

conservative compared to the exact values for the specific doubly-symmetric I-girder 

considered in this study.  

 

 For the continuous-span beam segments subjected to reverse-curvature bending, Eqs. (28) 

and (30b) both give accurate to somewhat conservative results for the doubly-symmetric 

cross-section. However, for the singly-symmetric cross-section, Eq. (28) is quite 

conservative relative to the exact elastic LTB solutions. For cases with a smaller top 

flange (Iy.top/Iy < 0.5), Eq. (29) gives an abrupt drop in the calculated Cb value regardless 

of the length of the top flange subjected to compression. Also, the terms MA, MB and MC 

in Eq. (28) are blind to the sign of the bending moment. This is appropriate for doubly-

symmetric I-section members, but the accuracy of Eq. (28) is limited for reverse-

curvature bending of singly-symmetric I-section members due to this simplification.  

 

 For all the cases involving reverse-curvature bending and a singly-symmetric cross-

section in Figure 66, Eq. (28) gives a more accurate estimate of Cb.exact if Rm is taken 

equal to 1.0 (such that the Cb calculation is the same as that for a doubly-symmetric 

cross-section member). For the third example (the linear moment diagram with Mmax at 

both ends and reverse-curvature bending) the resulting Cb is 2.27 versus Cb.top.exact = 3.14, 

giving a ratio of the design estimate to the exact buckling calculation of 2.27/3.14 = 0.72 

rather than the ratio 0.41 shown in the figure. For the right-most unbraced length in the 

fourth example, the resulting Cb is 2.63 versus Cb.top.exact = 2.42, giving a ratio of 

2.63/2.42 = 1.09. This is within the range of the Cb/Cb.exact ratios for the examples studied 

by Helwig et al. (1997). For the right-most unbraced length in the fifth example, the 

resulting Cb is 2.18 versus Cb.bot.exact = 2.58, giving a ratio of 2.18/2.58 = 0.84 rather than 

0.48. However, for more extreme reverse-curvature bending cases on singly-symmetric 

cross-section members, such as when there are no intermediate braces within the span, 

the calculation of Rm by Eq. (29) is necessary to obtain an adequate solution using Eq. 

(28) (Helwig et al. 1997).  

 

In addition to the above observations, White et al. (2001) show that the AASHTO (2014) 

approach, when used with the most critical moment envelope values as specified in the 

definitions of f2, fmid and fo, always gives an accurate to conservative representation of the 

moment gradient effects associated with the actual concurrent loadings. There does not appear to 

be a way to prove this useful property for Eqs. (28) and (29). Also, Eqs. (30) focus solely on the 

flange under consideration. For unbraced lengths subject to single-curvature negative bending or 

for reverse-curvature bending in composite I-section members, Eq. (30b) is applied by focusing 

solely on the bottom flange stresses, without the need to consider any properties of the top 

flange. For composite sections in positive bending, AASHTO (2014) considers the compression 

flange to be continuously braced. If the right-most unbraced lengths in examples 4 and 5 of 

Figure 66 were composite I-girders, the Cb calculations for the bottom flange would be the same 

as illustrated in the figure. No calculations would be required for the composite top flange. As 

noted above, Eqs. (28) and (29) are not intended for composite I-section members. Section 5.3.5 

of this module discusses the overall logic and rationale behind the AASHTO (2014) LTB 

calculations for composite I-girder segments in negative bending. Lastly, it is important to 
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recognize that in most practical design situations, even with relatively large unbraced lengths, the 

base uniform bending resistance, Fnc or Mnc, shown by the solid curve in Figure 60 is often not 

significantly smaller than Fmax or Mmax. For example, if Lb = Lr, Fnc is typically equal to 0.7Fyc. 

Therefore, for slender-web members, a Cb value of 1/0.7 = 1.43 is sufficient to raise the flexural 

resistance to Fmax.  

 

The discussion at the beginning of this section indicates that in unusual cases involving 

significant top flange loading either on unbraced cantilevers or on members with no intermediate 

bracing in the entire span, the influence of the load height must be considered. Loads applied to 

the top flange cause destabilizing (tipping) effects, whereas loads applied to the bottom flange 

enhance the member LTB resistance. When twisting of the cross-section is prevented at the ends 

of a cantilever or ordinary span, these effects are approximated with reasonable accuracy by the 

equation 

 
* 2 /1.4 y h

b bC C  (5.3.5-34) 

  

where Cb is the base moment gradient factor determined without considering load height effects 

(e.g., via Eq. (28) or Eqs. (30)), y is the load height above the mid-depth of the cross-section, 

negative for load applied above the mid-depth, and h is the distance between the flange centroids 

(Helwig et al. 1997; Ziemian 2010). Helwig et al. (1997) show that the definition of y in Eq. (34) 

as the distance from the mid-depth gives an accurate representation of the effect of the load 

height. They show that if the Cb values are derived using the cross-section shear center as the 

origin for y, they are quite sensitive to the shear center location. However, with the origin for y 

taken at the cross-section mid-depth, Eq. (28) gives an accurate representation of the Cb values 

for loadings applied at the mid-depth, regardless of the shear center location. Equation (28) 

generally gives a more accurate and more liberal estimate of the effects of moment gradient 

relative to Eqs. (30) for spans with no internal bracing but where twisting is restrained at the ends 

of the span.  

 

The discussion at the beginning of this section also indicates that Cb may not necessarily be taken 

equal to 1.0 in general unbraced cantilevers with less than essentially rigid warping restraint at 

their fixed end. Ziemian (2010) suggests recommended procedures for determining the buckling 

load of these types of members. The reader is referred to Ziemian (2010), Dowswell (2002), 

Yura and Helwig (1996) and Anderson and Trahair (1972) for a range of LTB solutions 

applicable for unbraced cantilevers.  

 

5.3.5.12 Other considerations specific to composite I-section members in negative 

bending 

 

The AASHTO (2014) equations discussed in the above sections provide one single consistent 

representation of the FLB and LTB resistance of both noncomposite I-section members as well 

as composite I-section members in negative bending. The application of these equations to 

composite I-girders in negative bending is based on the following simple concept that has been 

used extensively for the design of experimental tests to study the behavior in the negative 

moment regions of composite beams. Numerous research studies have shown that the resistance 

of composite beams in negative bending can be approximated accurately to conservatively by 
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using a large steel tension flange or a cover-plated tension flange. These tension flange elements 

provide a force equivalent to that developed by the slab reinforcing steel in the prototype 

composite member (White and Barth 1998; Barth and White 1997; Kemp 1996; Grubb and 

Carskaddan 1981 & 1979; Climenhaga and Johnson 1972). The AASHTO (2014) approach 

considers the contribution to the cross-section moment from the reinforcing steel as a tension 

flange element, but otherwise focuses on the compressed region of the steel I-section for the 

stability assessment. The lateral and torsional restraint that the concrete deck provides to the steel 

I-section is neglected. The effects of this restraint are reduced in general by web distortion, and 

for typical I-girder bridges, the benefits of this restraint are judged not to be worth the additional 

effort associated with the distortional buckling solution. This is because, for the majority of cases 

in bridge I-girders, the Cb values calculated as discussed in the previous section will place the 

negative bending LTB capacity on the plateau of the dashed flexural resistance curve shown in 

Figure 60.  

 

In calculating the radius of gyration rt from Eq. (9) for composite I-section members, AASHTO 

(2014) specifies that Dc should be determined using the cross-section composed of the steel I-

section member plus the longitudinal reinforcing steel. For composite I-sections in negative 

bending, this value of Dc tends to be slightly conservative relative to the actual Dc under the 

combined composite and noncomposite loadings. This calculation also removes another 

dependency of the LTB resistance on the applied loadings.  

 

For composite I-section members in negative bending, the Appendix A6 LTB and FLB 

resistances, which are written in terms of member moments, depend in general on the elastic 

section modulus to the compression flange, Sxc. Also, the TFY resistance depends in general on 

the elastic section modulus to the tension flange elements, Sxt. These elastic section moduli are 

calculated as  

 

Sxc = Myc/Fyc  (5.3.5-35a) 

 

and  

 

Sxt = Myt/Fyt  (5.3.5-35b) 

 

where Myc and Myt are the cross-section yield moments. The yield moments are in turn calculated 

using a procedure detailed in Article D6.2.2 that accounts for the separate influence of 

noncomposite and composite loadings on the cross-section elastic stresses. The yield moment 

Myt is based on the first yielding of any top-flange elements of the steel section or of the slab 

reinforcing steel. 

 

For negative bending of composite I-section members with compact or noncompact webs, the 

AASHTO Appendix A6 flexural resistance depends on the loading type only in the places where 

the elastic section moduli, Sxc or Sxt, or the yield moments, Myc or Myt, enter into the calculations. 

The composite cross-section is handled as fully cracked in the section-level calculations, and 

hence the long-term and short-term section moduli are identical. 
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Article A6.3.3 specifies equations for Cb that parallel Eqs. (30) but are written in terms of the 

member moments rather than the flange stresses. This is consistent with the practice of 

neglecting the separate influence of noncomposite and composite loadings on the resistance in 

the limit that the I-section web, flange and unbraced length are compact. Article C6.8.10.2.3 

points out that the overall effect of the different types of loading on the Cb calculation is 

considered negligible for compact- and noncompact-web composite I-sections in negative 

bending. This article also permits the use of the total moments in calculating Cb for slender-web 

members if it is felt in the judgment of the Engineer that the effect on the final calculated value 

of Cb is insignificant.  

 

5.3.5.13 LTB effective lengths 

 

As noted in Section 5.3.5 of this module, ordinary practice is to take Lb as the actual unsupported 

length between the brace points corresponding to compression flange level bracing and/or the 

diaphragm or cross-frame locations. That is, a LTB effective length factor of K = 1.0 is assumed 

for all the unbraced lengths. However, substantial restraint can exist at the ends of a critical 

unbraced length when the adjacent segments are less critically loaded, resulting in an effective 

length KLb < Lb for the critical segment. AASHTO (2014) allows this smaller KLb to be used in 

place of Lb to increase the calculated member LTB resistance, Fnc or Mnc, in its Articles 

6.10.8.2.3 and A6.3.3 and/or to reduce the calculated amplification of the compression flange 

lateral bending stresses in Article 6.10.1.6. Article C6.10.8.2.3 recommends a simple hand 

method from Galambos (1998) and Nethercot and Trahair (1976) for estimating K. A generalized 

form of this procedure, which is applicable for singly- and doubly-symmetric I-section members 

and includes the consideration of moving live loads, is outlined below. The method is based on 

an analogy between the buckling of a continuous beam and the buckling of an end-restrained 

column. As such, it uses the alignment chart for nonsway columns to determine a K factor for the 

critical unbraced length.  

 

The suggested procedure involves the following steps: 

 

1. Determine Cb for each unbraced segment in the member as discussed in Section 5.3.5. 

 

2. Identify the critical segment. This segment is the one that buckles elastically at the 

smallest multiple of the design loadings, using the largest moment envelope value in each 

unbraced segment, and using the actual unbraced length Lb in the applicable elastic LTB 

resistance equation for each segment. The multiple of the design loadings associated with 

the buckling of the critical segment is denoted by m. Also, the multiples of the design 

loadings associated with the buckling of the adjacent segments (should they exist) are 

denoted byrL andrR respectively. For all of these segments, the following equation 

applies: 
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where Fe.LTB is the governing elastic LTB resistance determined using Eq. (19) for 

compact- or noncompact-web members or Eq. (23) for slender-web I-section members, 

and fbu is the largest value of the compression flange stress in the segment under 

consideration.  

 

3. Calculate a stiffness ratio, , for each of the above three segments. The stiffness ratio for 

the critical segment is determined as 
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and the stiffness ratio for each of the adjacent “restraining” segments is determined as 
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 (5.3.5-38) 

 

where n = 2 if the far end of the adjacent segment is continuous, n = 3 if it is simply-

supported (torsionally), and n = 4 if it is torsionally fixed. If the critical segment has a 

simply-supported end and no adjacent unbraced length, r = 0. Also, for cases involving 

monosymmetric I-girders and reverse curvature bending in any one of the above 

segments, the area (bfctfc + Dctw / 6) and rt terms in Eqs. (37) and (38) are the values 

corresponding to the governing elastic LTB resistance.  

 

4. Determine the ratios G = m/r for each end of the critical segment. 

 

5. Substitute the above G values into the sidesway-inhibited column alignment chart (AISC 

2010; AASHTO 2010; Kavanagh 1962) to obtain the effective length factor K. As noted 

previously in Section 5.2.2 of this module, AASHTO (2014) Article C4.6.2.5 gives 

closed form equations that provide a close fit to the alignment chart results. 

 

The above procedure is a very practical approach in that steps 1 and 2 are a by-product of the 

ordinary design calculations, where K is implicitly taken equal to 1.0 and the actual unsupported 

length Lb is used within the LTB resistance equations. Therefore, steps 3 through 5 are basically 

an “add-on” to the ordinary design procedures that the Engineer can utilize when he or she 

deems the additional calculations to be useful to justify a more liberal calculation of the 

resistance. Also, the Engineer should note that in the special case where the adjacent unbraced 

lengths are equally critical (e.g., if all three unsupported segments have the same length Lb, the 

same cross-section, each segment subjected to the same uniform bending moment and n = 2 in 

the adjacent segments), r = 0 and G = ∞ at each end of the critical segment. This gives K = 1.0 

from the sidesway-inhibited column alignment chart. The above method is conservative because 

it is based on the assumption that the largest moment-envelope values in the adjacent segments 

are taken from the concurrent loadings associated with buckling of the critical unbraced length.  
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Figure 68  Simple-span I-girder and critical moment envelope for example calculation of 

LTB effective length factor K. 

 

The application of the above procedure can be understood best by working a representative 

example. Consider the prismatic simple-span girder with four equally-spaced intermediate brace 

points shown in Figure 69. The middle unbraced length of this beam is clearly the most critical 

since it contains the largest moment and all of the unbraced lengths are equal.  In step 1 of the 

above procedure, the moment envelope values for the middle unbraced segment give fmid/f2 > 1. 

As a result, Cb = 1.0 for this segment from Eq. (30a). The moment envelope values for the 

unbraced lengths adjacent to the central segment give fmid/f2 = 0.875 and thus f1/f2 = 0.75 using 

Eq. (32). This gives, Cb = 1.13 for these segments from Eq. (30b). For the end segments, fmid/f2 = 

0.56, giving f1/f2 = 0.12 and Cb = 1.63. 

 

If the Engineer deems that the additional effort of calculating K < 1 is not worthwhile, he or she 

can stop at this stage and use the above Cb values along with K = 1 for the design. For that 

matter, the Engineer could base the design on Cb
 
= 1 and K = 1 and avoid the calculations in step 

one. However, if the additional benefits of using K < 1 are potentially significant, the Engineer 

may wish to continue to step 2. One of the excellent attributes of the suggested (Nethercot and 

Trahair 1976) procedure is that the subsequent steps utilize the Cb values that the Engineer has 

already determined based on ordinary practice.  

 

If the Engineer continues to step 2 for the example girder in Figure 69, he or she would observe 

that since the central segment has Cb = 1 and the girder is prismatic (no section transitions) with 

equal unbraced lengths, the central unbraced length is the most critical one. If the applied load 

level on the beam associated with the buckling of this segment is taken as m = 1.00, the 

corresponding applied load level at the buckling of the adjacent segments (using K = 1), are 

simply r = Cb = 1.13/0.96 = 1.18. (Note that one has to divide by 0.96 because at the applied 

load level of m = 1.00, the maximum moment in the adjacent segments is only 0.96Mmax.) If m 

from Eq. (37) is normalized to a value of 2, then  
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from Eq. (38). This completes step 3. In step 4, the value of G = m/r is 2/0.301 = 6.64 at both 

ends of the critical segment. Given these G values, one enters the sidesway-inhibited column 

alignment chart (step 5) to obtain K 0.94. This K factor can now be used to obtain a slightly 

higher LTB resistance (roughly 13 % higher if the elastic LTB equations govern the strength) as 
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well as a slightly smaller amplification of the elastic compression flange lateral bending stresses. 

This is a relatively small benefit in this example. However, the benefit can be larger in some 

cases.  

 

When checking the resistance of the unbraced lengths adjacent to the critical segment, it is 

essential to account for the fact that the more critical segment tends to destabilize the less critical 

ones if the critical segment is assumed to be restrained such that its K is less than one. This is 

addressed by calculating the K factor for the adjacent segments as 

 

*

r

m

K



  (5.3.5-40) 

 

where m
*
 is the load parameter at elastic buckling of the critical unbraced, based on the above 

computed K < 1, i.e., *

m
 = (1/0.94)

2
 = 1.13. Equation (40) gives K = [1.18 / 1.13]

0.5
 = 1.02 for the 

segments adjacent to the central unbraced length in Figure 69. As illustrated here, the effective 

length factor for the adjacent segments will actually exceed 1.0; however, these segments are the 

less critical ones, and the overall calculated elastic LTB capacity of the girder is always 

increased by using the above procedure.  

 

An effective length factor of K = 1 should be used for other unbraced lengths that are not 

adjacent to the critical segment. The above procedure focuses only on the critical segment and 

the unbraced lengths adjacent to this segment. The more remote unbraced lengths are assumed 

not to have any significant buckling interaction with the critical segment.  

 

In cases where one or more of the unbraced lengths contains a cross-section transition, but the 

members are otherwise prismatic, the transition to a smaller section may be neglected in 

determining the  value for the segment containing the transition, and the above procedure may 

be used to determine the LTB effective lengths, when: 

 

 The critical segment or either of its adjacent segments has a cross-section transition within 

20 % of the corresponding unbraced length Lb, and  

 

 The changes in the flange moments of inertia about the plane of the web at the cross-

section transition(s) are less than a factor of two for both flanges (i.e., I1/I2 > 0.5 where I1 

and I2 are the moments of inertia of the smaller and larger flanges respectively). 

 

The calculation of the LTB resistances for more general cases involving stepped, variable web-

depth and other nonprismatic I-section members is addressed in Section 5.3.6 of this module.  

 

5.3.5.14 Inelastic redistribution of interior pier moments in continuous-span bridges 

 

Minor yielding over the interior supports of continuous spans results in a redistribution of the 

girder moments. For straight continuous-span flexural members that satisfy requirements 

intended to ensure adequate ductility and robustness of the girder segments adjacent to the 

interior piers, AASHTO (2014) Appendix B6 may be used to calculate the redistribution 
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moments at the SERVICE II and/or Strength load levels. These provisions replace the former 10 

% redistribution allowance as well as former inelastic analysis procedures. They provide a 

simple calculated percentage redistribution from the interior-pier sections. The calculated 

redistribution moments are akin to internal moments generated by the following pre-stressing 

procedure:  

 

1. The slab is cast and/or cover plates are welded to the bottom flange of pier sections with 

the interior supports jacked to an elevation higher than their final positions, and  

 

2. The interior supports are lowered to their final positions after the construction is complete 

and the slab has attained sufficient strength.  

 

However, the redistribution moments are generated by minor inelastic rotations in the girders 

over the interior supports rather than the above construction operations. The interior pier sections 

are designed to exhibit ductile moment-rotation responses and to shake down elastically after a 

few passages of the maximum design loads.  

 

Appendix B6 utilizes the elastic moment envelopes and does not require any direct use of 

inelastic analysis. As such, these updated procedures are substantially simpler and more 

streamlined than the inelastic analysis procedures of previous AASHTO Specifications. For the 

types of bridges and girder requirements where they are allowed, these provisions make it 

possible to potentially use prismatic sections along the entire length of the bridge or between 

field splices without requiring excess material. This practice can improve the overall fatigue 

resistance and provide significant fabrication economies. The development of the Appendix B6 

provisions is documented in a number of comprehensive reports (Barker et al. 1997; Schilling et 

al. 1997; White et al. 1997) and in a summary paper by Barth et al. (2004).  

 

The provisions of Appendix B6 account for the fact that the compression flange slenderness, 

bfc/2tfc, and the cross-section aspect ratio, D/bfc, are the predominant factors that influence the 

ductility of the moment-rotation response at adequately braced interior-pier sections. As such, 

these provisions apply to all compact compression-flange pier sections with compact, 

noncompact or slender webs up to D/tw = 150, as long as the following restrictions are satisfied: 

 

 The bridge must be straight. 

 

 The bearing lines shall not be skewed more than 10 degrees. 

 

 None of the cross-frame lines may be staggered. 

 

 The largest girder specified minimum yield strength in the unbraced lengths immediately 

adjacent to the interior piers shall not exceed 70 ksi.  

 

 The tension flange shall not have any holes over a distance of two times the web depth on 

each side of interior pier sections from which moments are redistributed.  
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 Moments shall be redistributed only from interior pier sections that have bearing 

stiffeners at the interior pier sections and for which the immediately adjacent unbraced 

lengths are prismatic and satisfy the requirements 
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 (AASHTO B6.2.4-1) 

And 

 

Vu < v Vcr (5.3.5-45) 

 (AASHTO B6.2.5-1) 

 

Where 

 

M1 = the bending moment at the brace point with the smaller moment due to the factored 

loads, taken as the value from the moment envelope that produces the smallest 

permissible unbraced length,  

 

M2 = the bending moment at the brace point with the larger moment due to the factored 

loads, taken as the critical moment envelope value,  

 

Vu = the shear in the web due to the factored loads, and 

 

Vcr = the shear buckling resistance specified in AASHTO (2014) Article 6.10.9.2 for 

unstiffened webs and in AASHTO (2014) Article 6.10.9.3 for transversely-stiffened 

webs. 

 

The above limits ensure that the pier sections exhibit significant ductility and limit the 

application of the Appendix B6 procedures to designs supported by the background research.  

The main provisions of Articles B6.3 and B6.4 utilize the concept of an effective plastic moment  

 

Mpe < Mn  (5.3.5-46) 

 (AASHTO B6.5.1-3 & B6.5.2-2) 

 

at the interior pier sections, where Mn is the pier section flexural resistance calculated as 

discussed in Section 5.3.5 of this module, and the reduction in Mpe relative to Mn is based on 
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simplified lower-bound estimates of the pier section inelastic moment-rotation responses. The 

differences between the maximum moments from the factored elastic moment envelopes, Me, 

and the effective plastic moments, Mpe, are redistributed from the pier sections to the positive 

moment regions up to a maximum of 0.2Me.  

 

5.3.6  Stepped, Variable Web Depth and Other Nonprismatic I-Section Members 

 

Section 5.2.6 of this module outlines a generalization of the AASHTO (2014) and AISC (2010) 

column resistance equations, from Kaehler et al. (2011), for handling of nonprismatic members 

loaded in nonuniform axial compression. Kaehler et al. also address the generalization of the 

AASHTO (2014) and AISC (2010) flexural resistance equations to members with nonprismatic 

cross-section geometry. The following is a summary of the basic concepts and procedures from 

this reference.  

 

The equations for composite members in positive bending, discussed in Sections 5.3.3 and 5.3.4 

of this module, as well as the FLB and TFY equations for composite members in negative 

bending and noncomposite members, outlined in Section 5.3.5, are effectively cross-section 

based checks. Hence, these equations may be applied directly for all types of members on a 

cross-section-by-cross-section basis. One determines the required moment, Mu, or the required 

flange stress, fbu, at all the cross-sections along the member length. These required moments or 

stresses are then compared against the corresponding cross-section design resistances. Of course, 

when performing manual calculations, the Engineer can often identify by inspection one or only 

a few potentially critical sections that need to be checked. However, for automated design 

assessment, one would typically check the cross-sections at a selected interval along the member 

lengths.  

 

In contrast to the above limit state checks, the LTB resistance cannot be assessed solely on a 

cross-section-by-cross-section basis. This is because the LTB resistance depends on the cross-

section properties along the entire unbraced length as well as the loading configuration (e.g., 

moment gradient) and the end conditions (e.g., continuity with adjacent unbraced lengths). These 

factors are very similar to the factors that influence the member out-of-plane resistance in axial 

compression. As such, similar to the approach outlined in Section 5.2.6 of this module, the LTB 

resistance of a general nonprismatic I-section member may be determined by focusing on: 

 

1. The ratio of the moments (or compression flange stresses) at elastic LTB to the 

corresponding factored moments (or stresses) 
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And 

 

2. The largest ratio of the factored moment (or compression flange stress) to the section 

yield strength 
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from all the cross-sections along the unbraced length.  

 

Elastic LTB governs for unbraced lengths in which  
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or 
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where  

fbu.max and 

Mu.max 

= the required compression flange flexural stress and the corresponding  

moment at the most highly stressed cross-section, relative to the 

compression flange yield strength (i.e., at the location of o.max),  

 

Sxc.max = elastic section modulus to the compression flange at the location of o.max, 

and 

 

e.LTB = the ratio of the elastic LTB load level to the factored load level defined 

above.  

 

In this case, the nominal flexural resistance may be written simply as 

 

Fnc = Fcr = RbFe.LTB (5.3.6-4a) 

 

for slender-web members or 

 

Mnc = Me.LTB= SxcFe.LTB (5.3.6-4b) 

 

for noncompact- or compact-web members.  

 

(The symbols Fe.LTB and Me.LTB  represent the elastic LTB resistances obtained from beam theory. 

As indicated by Eq. (4a), the nominal elastic LTB resistance for slender-web members is 

reduced, relative to the beam theory solution, by the web load-shedding factor, Rb. AASHTO 

(2014) denotes this flange LTB stress by the symbol Fcr. The term Fe.LTB is used in this module 

for consistency with the terms in the column resistance equations and to distinguish the nominal 

flange LTB stress from the beam theory LTB stress.) 

 

Similar to the column buckling calculations discussed in Section 5.2.6 of this module, there is 

only one e.LTB for a given unbraced length, although the compression flange stresses and the 

corresponding moments vary in general from cross-section to cross-section along the member 

length. The above equations give the elastic LTB resistance at the most highly stressed cross-
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section. However, if Fe.LTB = e.LTB fbu and Me.LTB = e.LTB Mu were calculated at any of the other 

cross-sections, the ratio fbu / Fe.LTB =  Mu / Me.LTB is still the same value, 1/ e.LTB.  

 

 

For unbraced lengths where 
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nominal yielding occurs before the member reaches its full flexural resistance, and thus inelastic 

LTB resistance governs. In this case, similar to the calculation of the inelastic column resistance 

in Section 5.2.6, the inelastic LTB resistance is determined by mapping the nonprismatic 

member to an equivalent prismatic member that has: 

 

1. The same e.LTB, and  

 

2. A o equal to the above o.max.  

 

 

This is illustrated by Figure 69.  

 

Yielded Zone (Typ.)

M2

Mu

Mu

M1

Same e.LTB

o = Mu/Myc = o.max 

e.LTB = Me.LTB.2 / M2

o.max = (Mu/Myc)max

 
 

Figure 69  Conceptual mapping of a tapered-web I-section member subjected to bending 

moment to an equivalent prismatic member. 

 

Since the St. Venant torsional constant J typically has little influence on the elastic LTB 

resistance for Lb < Lp, Eq. (5.3.5-23) can be employed to solve for the unbraced length Lb 

corresponding to a given Fe.LTB in uniform bending (Cb = 1). The result is 
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This unbraced length may be equated to Eq. (5.3.5-8) to determine the following elastic critical 

stress to yield stress ratio corresponding to the compact bracing condition: 
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That is, whenever Eq. (7) is satisfied, the inelastic LTB resistance corresponds to the plateau  

 

Mnc = Mmax or  Fnc = Fmax (5.3.6-8) 

 

illustrated in Figure 60. Furthermore, for 2.yr e LTB

yc yc

F F

F F
  , one can substitute Eq. (6) and a 

similar equation for Lb = Lr into the AASHTO (2014) expressions describing the linear 

interpolation between Anchor Points 1 and 2 in Figure 60 to obtain 
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for slender-web members and  
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for noncompact- and compact-web members (White and Kim 2006; Kaehler et al. 2011).  

The Engineer should note that the ratio . .e LTB e LTB

yc yc

F M

F M
  in Eqs. (7) and (9) is analogous to the 

ratio Pe/Po in the general column resistance equations of Section 5.2.1 of this module. Similar to 

the developments in Section 5.2.6 of this module, this ratio may be expressed as follows in terms 

of the parameters o.max and e.LTB: 
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The design calculations corresponding to the above concepts start by testing the result from Eq. 

(10) against the limits for the above equations, then calculating Mnc or Fnc based on the 

applicable of Eqs. (4), (8) or (9).  
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Although the derivation of Eqs. (7) and (9) is conducted in the context of uniform bending of 

prismatic members and is based on the assumption of J = 0, these equations provide an accurate 

to slightly conservative approximation of the nominal flexural resistance for all types of 

prismatic and nonprismatic members subjected to general loading (moment gradient) conditions. 

One only needs to determine the elastic LTB load ratio e.LTB and the maximum ratio of the 

factored moment to the yield moment o.max = (Mu / Myc)max = (fbu / Fyc)max. This conceptual 

extension of the Specification LTB resistance equations is the same as that invoked originally by 

Lee et al. (1981) in the context of AISC Allowable Stress Design.  

 

Based on the above concepts, the LTB flexural capacity ratio fbu.max / Fnc or Mu.max / Mnc for a 

given unbraced length is determined as follows: 

 

1. Calculate o = fbu / Fyc or Mu / Myc at the various cross-sections along the unbraced length. 

  

2. Determine the maximum value of o, i.e., o.max.  

 

3. Calculate the ratio of the elastic LTB load level to the factored load level e.LTB. If the 

web is slender at any location along the unbraced length, Fe.LTB is to be calculated using J 

= 0. (This is because the AASHTO (2014) and AISC (2010) resistance equations are 

based on J = 0 for slender web members. Members with slender or nearly slender webs 

tend to exhibit only a minor difference between the Fe.LTB obtained using the actual J or 

using J = 0. Furthermore, the LTB resistance tends to be reduced significantly due to web 

distortion effects in these types of members, particularly in cases with heavy flanges 

(Bradford 1992; White and Jung 2007).) 

 

4. Determine the flexural capacity corresponding the most highly stressed cross-section by 

substituting e.LTB and o.max into Eq. (10), and then using Eq. (4), Eq. (8) or Eq. (9) as 

applicable based on the value of Fe.LTB/Fyc = Me.LTB/Myc calculated from Eq. (10). If the 

web is slender at any position along the unbraced length under consideration, the 

unbraced length is considered as a slender-web member. The parameters Rb for slender-

web members and Rpc for noncompact- or compact-web members, are calculated at the 

most highly stressed cross-section (i.e., the one corresponding to o.max), but using the 

largest 2Dc/tw throughout the segment length. The parameter Rh is taken as the smallest 

value of Rh from the different cross-sections along the member length. 

 

5. Calculate the flexural capacity ratio for the unbraced length under consideration as fbu.max / 

Fnc or Mu.max / Mnc.  

 

(It should be noted that the calculation of Rb and Rpc in step 4 involve conservative 

simplifications. Alternatively, one can calculate Fyc/Fe.LTB, Rb and Rh for slender-web cross-

sections, or Fyc/Fe.LTB and Rpc for noncompact- or compact-web cross-sections, separately for all 

the cross-sections along the unbraced length, where Fe.LTB is defined as the compression flange 

stress at the cross-section under consideration at incipient elastic LTB. The governing fbu/Fnc or 

Mu/Mnc is obtained as the largest value from all of these cross-section based checks. The 

member length effects are handled properly at each cross-section via the calculation of Fe.LTB 

considering the member loading and geometry.) 
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Kaehler et al. (2011) provide a range of design example calculations and discuss various 

methods for determining the ratio e.LTB for different member geometries. Potentially, e.LTB can 

be calculated most reliably using software tools. Unfortunately, few analysis programs give 

accurate elastic LTB solutions for singly-symmetric and/or nonprismatic members. Furthermore, 

there are a number of complexities associated with the proper definition of elastic LTB models, 

and most programs that have reliable capabilities for elastic LTB analysis are somewhat difficult 

to use in setting up these models. Even when this state of practice is eventually improved, 

Engineers will still have a need for reliable simplified approximate solutions.  

 

The following very simple and useful approximate solution for practical unbraced lengths with 

linearly-tapered web depths uses a procedure suggested by Yura and Helwig (1996) for the 

calculation of e.LTB: 

 

1. Calculate Cb using any appropriate equation, but for Cb equations written in terms of 

member moments, use the stresses in the flange under consideration rather than the cross-

section moments.  

 

2. Estimate the elastic LTB stress at the cross-section having the largest fbu/Fyc = Mu/Myc as  

Fe.LTB = Cb Fe.mid  (5.3.6-11) 

 

where Fe.mid is the elastic LTB stress calculated from the AASHTO-AISC elastic LTB 

equations for a prismatic member using the cross-section properties at the middle of the 

unbraced length.  

 

3. Calculate Fe.LTB/Fyc as the ratio of the above Fe.LTB to the compression flange yield 

strength at the above cross-section with the largest fbu/Fyc, or alternatively, determine 

e.LTB by substituting Fe.LTB and fbu at the most highly stressed cross-section into Eq. (1), 

determine o.max by substituting the elastic flange stress and the compression flange yield 

strength at this cross-section into Eq. (2) 

 

4. Use the above Fe.LTB/Fyc ratio to determine the nominal flexural resistance based on the 

applicable Eq. (4), (8) or (9).  

 

 

White and Grubb (2003) give another approximate solution for unbraced lengths composed of 

prismatic segments with a single cross-section transition within the unbraced length. This 

solution is adapted from Carskaddan and Schilling (1974) and Dalal (1969): 

 

1. Calculate Cb using Eqs. (5.3.5-30) and assuming that the unbraced length is prismatic. 

 

2. Calculate the elastic LTB stress corresponding to the section with the largest end moment 

M2 as  
2

. .2 2

.2( / )

b
e LTB

b t

C E
F

L r


  (5.3.6-12) 
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Figure 70  Ratio of elastic LTB stress at the section with the largest moment M2 to the LTB 

stress determined assuming that the member is prismatic with the larger cross-section 

throughout the unbraced length (adapted from Carskaddan and Schilling (1974) and Dalal 

(1969)). 

 

where rt.2 is the radius of gyration of the compression flange plus one-third of the depth 

of the web in compression for the cross-section corresponding to M2 and  is determined 

from the chart shown in Figure 70. (This procedure assumes M2 is the largest moment 

within the unbraced length under consideration, and that this moment occurs in the larger 

of the two cross-sections.)  

 

3.  Calculate e.LTB as Fe.LTB.2/fbu.2, where fbu.2 is the compression flange factored stress at the 

cross-section corresponding to M2.  

 

4. Calculate o.max as the larger of fbu.s/Fyc.s and fbu.2/Fyc.2, where fbu.s is the compression 

flange factored stress at the smaller section at the cross-section transition, Fyc.s is the 

corresponding compression-flange yield stress, and Fyc.2 is the compression flange yield 

stress at the cross-section corresponding to M2.  

 

5. Calculate Fe.LTB/Fyc from Eq. (10), and use this ratio for determining the nominal flexural 

resistance from the applicable Eq. (4), (8) or (9). 

 

The parameter  is the ratio Pe/(
2
EI2/Lb

2
) for the stepped column shown in Figure 70. This ratio 

gives a slightly conservative estimate of the elastic LTB resistance for a stepped I-section 

member subjected to moment gradient with the larger moment applied to the larger end cross-

section. Based on the behavior illustrated in Figure 70, AASHTO (2014) Articles C6.10.8.2.3 

and CA6.3.3 effectively allow transitions to a smaller cross-section to be neglected in 

determining Fn (or Mn) for unbraced lengths having a step in the cross-section with  

 

 L1/Lb < 0.2,  

 

 I1/I2 > 0.5 and 
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 maximum fbu /Fyc in the unbraced length  corresponding to the larger cross-section.  

 

where L1 is the length of the segment with the smaller cross-section, and I1 and I2 are the 

individual compression flange moments of inertia about the plane of the web for the smaller and 

larger flanges respectively (to be checked for both flanges). The reader is referred to Kaehler et 

al. (2011) for other elastic LTB solutions.  

 

5.3.7 Combined Major-Axis Bending, Minor-Axis Bending and Torsion 

 

5.3.7.1 General 

 

AASHTO (2014) Article 6.10 and its Appendices A6 and B6 provide a unified approach for 

consideration of I-girder major-axis bending, minor-axis bending and torsion from any source. 

Similar to prior Guide Specifications for curved steel bridge design such as AASHTO (2003), 

the AASHTO (2014) provisions focus on the flange lateral bending caused by the warping (i.e., 

cross-bending) of the flanges as the primary response associated with the torsion of I-section 

members. Significant flange lateral bending may be caused by wind, by eccentric concrete deck 

overhang loads acting on forming brackets placed along exterior girders, and by the use of 

discontinuous cross-frame lines in bridges with skew angles larger than about 20
o
. For the 

majority of straight non-skewed bridges, flange lateral bending effects tend to be the most 

significant during construction and tend to be insignificant in the final constructed condition. 

However, for horizontally curved bridges, in addition to the effects from the above sources, 

flange lateral bending due to the curvature must be considered at all limit states and during 

construction. The intent of the Article 6.10 provisions is to provide a straightforward approach 

for the Engineer to account for the above effects in design in a direct and rational manner 

whenever these effects are nonnegligible. When the various flange lateral bending effects are 

judged negligible or incidental, the provisions reduce the design of I-section members subjected 

to major-axis bending alone (outlined in Sections 5.3.5 and 5.3.6 of this module).  

 

The basic form of the AASHTO (2014) resistance equations that account for the combined 

effects of major-axis bending and flange lateral bending is 

 

1

3
bu f nf f F   (5.3.7-1) 

 (AASHTO 6.10.3.2.1-2, 6.10.3.2.2-1, 6.10.7.2.1-2, 6.10.8.1.1-1 & 6.10.8.2-1) 

 

for members in which the major-axis bending resistance is expressed in terms of the 

corresponding flange stress and 

 

1

3
u x f nM f S M   (5.3.7-2) 

 (AASHTO 6.10.7.1.1-1, A6.1.1-1 & A6.1.2-1) 

 

for members in which the major-axis bending resistance is expressed in terms of the bending 

moment, where 
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fbu = the elastically-computed flange major-axis bending stress,  

 

f = the elastically-computed flange lateral bending stress, 

 

f Fn = the factored flexural resistance in terms of the flange major-axis bending stress,  

 

Mu = the member major-axis bending moment, 

 

Sx = the elastic section modulus about the major-axis of the section to the flange under 

consideration, taken as the short-term section modulus for composite members in 

positive bending or the section modulus of the composite section for composite 

members in negative bending, and 

 

f Mn = the factored flexural resistance in terms of the member major-axis bending 

moment. 

 

Equations (1) and (2) are referred to in AASHTO (2014) as the one-third rule. These equations 

are simple, yet they do an excellent job of characterizing the various strength limit states that can 

govern the resistance of I-section members. Equations (1) and (2) address the combined major-

axis and flange lateral bending effects basically by handling the flanges as equivalent beam-

columns.  

 

Equation (1) is targeted specifically at checking of slender-web noncomposite members, slender-

web composite members in negative bending, and noncompact composite members in positive 

bending. Also, as discussed previously in Section 3 of this module, the resistance of I-section 

members generally to fbu < f Fn. In the limit that the flange lateral bending stress f is equal to 

zero, Eq. (1) reduces to this basic member check for major-axis bending alone. The maximum 

potential value of Fn is the flange yield strength Fyf, but Fn can be less than Fyf due to slender-web 

bend buckling and/or hybrid-web yielding effects, or due to compression flange lateral-torsional 

(LTB) or local buckling (FLB) limit states.  

 

Equation (2) may be used for checking the strength limit states of straight noncomposite 

members or composite members in negative bending that have compact or noncompact webs, 

and for checking of compact composite members in positive bending. For these member types, f 

Mn can be as large as f Mp, where Mp is the section plastic moment resistance. The reader is 

referred to Sections 5.3.3 through 5.3.5 of this module for definitions of the terms slender, 

noncompact and compact and for an overview of the calculation of f Fn and f Mn. Equation (1) 

may be used as a simple conservative resistance check for all types of I-section members. 

AASHTO (2014) Article 6.10 emphasizes this fact by relegating the use of Eq. (2) for straight 

compact and noncompact web noncomposite members and composite members in negative 

bending to its Appendix A6. The definition of Sx as the short-term modulus for composite 

sections in positive bending, and as the section modulus of the composite section for composite 

sections in negative bending, is a conservative simplification. This simplification is consistent 

with the precedent of neglecting the influence of the different types of loading on the resistance 

for compact composite members in positive bending, and with the limited dependency of the 
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different loading types for compact- and noncompact-web composite members in negative 

bending, as discussed previously in Sections 5.3.3 and 5.3.5 of this module.  

 

In the application of Eqs. (1) and (2), the stresses f and fbu, and the moment Mu, are taken as the 

largest values throughout the unbraced length when checking against the base flexural resistance 

f Fn or f Mn associated with lateral-torsional buckling. This is consistent with the application of 

the AASHTO and AISC interaction equations for a general beam-column subjected to combined 

axial load and bending. The stress fbu in Eq. (1) and the moment Mu in Eq. (2) are analogous to 

the axial load in a general beam-column, and the stress f is analogous to the beam-column 

bending moment. The moment Mu is analogous to axial loading since it produces axial stresses in 

the flanges. When checking compression flange local buckling or tension flange yielding, f, fbu 

and Mu may be determined as the corresponding values at the cross-section under consideration. 

Generally, Eq. (1) or (2), as applicable, must be checked for each flange, and both the FLB and 

LTB based resistances must be checked for the compression flange in calculating Fnc or Mnc. The 

check providing the largest ratio of the left-hand side to the right-hand side of these equations 

governs.  

 

The Engineer is permitted to use f = 0 when checking the top flange of composite I-girders, once 

the section is composite, since the composite slab tends to restrain the top flange lateral bending. 

AASHTO (2014) Article 6.10.7.2.1 requires that the concrete slab flexural stress shall be 

checked in addition to the use of Eq. (1). However, except in shored construction and in unusual 

cases of unshored construction discussed in the commentary to this article, the concrete flexural 

is typically much less than fc' at the Eq. (1) strength limit, and therefore the concrete stress check 

does not govern. 

 

As noted above, for curved bridges, AASHTO (2014) restricts the I-girder design in all cases to 

the use of Eq. (1). This restriction is due to the lack of a comprehensive understanding of the 

implications of significant member yielding and the concomitant inelastic redistribution on the 

forces and moments in curved bridge structural systems at the time that these provisions were 

implemented. Otherwise, Eqs. (1) and (2) are valid generally for all types of I-section members 

that satisfy the limits 

 

Lb/R < 0.1 (5.3.7-3) 

 (AASHTO 6.7.4.2-1) 

 

within the final constructed configuration, where Lb is the unsupported length between the cross-

frame locations and R is the horizontal radius of curvature, 

 

Lb < Lr  (5.3.7-4) 

 (AASHTO 6.7.4.2-1) 

where Lr is the unbraced length limit beyond which the base lateral-torsional buckling limit state 

is elastic, and  

 

f < 0.6 Fyf (5.3.7-5) 

 (AASHTO 6.10.1.6-1) 
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The first of these limits is a practical upper bound for the subtended angle between the cross-

frame locations (for constant R). It ensures that the I-girder webs will not have a do/R larger than 

0.1, where do is the spacing of the transverse stiffeners. Equations (1) and (2) have been observed 

to perform adequately in a number of cases with Lb/R larger than 0.2 (White et al. 2001). 

However, the development of these equations as well as the validation of the AASHTO (2014) 

Article 6.10.9.3 tension-field action shear strength equations for curved web panels has focused 

predominantly on members designed up to the limit specified by Eq. (3). Equation (4) is a 

practical upper bound for the unbraced length Lb beyond which the second-order amplification of 

the flange lateral bending stresses tends to be particularly severe. The reason for Eq. (5) is 

discussed in Section 5.3.7 of this module.   

 

Prior AASHTO Specifications have required Lb to be less than 25 ft. Article C6.7.4.1 explains 

that this requirement has been replaced by the requirement for a rational analysis.  Nevertheless, 

typical curved I-girders will not have unbraced lengths exceeding this former limit.  

 

5.3.7.2 Calculation of flange lateral bending stresses 

 

Various methods may be used for calculating the flange elastic lateral bending stresses f. 

AASHTO (2014) Article 6.10.1.6 gives simple equations for estimating the first-order lateral 

bending stresses due to the torsion associated with horizontal curvature (see Eq. (2.2.1-1) and 

AASHTO (2014) Article 4.6.1.2.4b), the torsion from eccentric concrete deck overhang loads 

acting on cantilever forming brackets placed along exterior girders (see AASHTO (2014) Article 

C6.10.3.4), and due to wind load (see AASHTO (2014) Article 4.6.2.7). These equations are 

based on the assumption of unbraced lengths other than at the ends of the bridge, where the 

flange is continuous with adjacent unbraced lengths, as well as equal lengths of the adjacent 

segments. Based on these idealized assumptions, the ends of the unbraced lengths are effectively 

torsionally and laterally fixed due to approximate symmetry boundary conditions. The Engineer 

should consider other more appropriate idealizations, or the use of computer analysis methods, 

when these assumptions do not approximate the actual conditions. Implications of various types 

of computer analysis on the calculation of f are addressed by Jung et al. (2005) and Chang et al. 

(2005).  

 

Similar to the amplification of internal bending moments in beam-column members, flange 

lateral bending stresses are generally amplified due to stability effects. However, it is impractical 

to calculate second-order live load stresses for moving live loads. Therefore, when Eq. (1) is 

applied for checking the compression flange, AASHTO (2014) Article 6.10.1.6 provides the 

following simple lateral bending amplification equation to account in an approximate fashion for 

these second-order effects:  
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 (5.3.7-6) 

 (AASHTO 6.10.1.6-4 & 6.10.1.6-5) 
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where 

 

Fe.LTB  = the compression flange elastic lateral-torsional buckling resistance from Eq. 

(5.3.5-19) for compact- or noncompact-web members or Eq. (5.3.5-23) for 

slender-web members, 

 

f1  =  the first-order compression flange lateral bending stress at the section under 

consideration (for checking of FLB), or the largest first-order compression flange 

lateral bending stress within the unbraced length (for checking of LTB), and  

 

fbu  = the largest value of the compression flange major-axis bending stress within the 

unbraced length under consideration.  

 

Amplification of the tension flange lateral bending stresses is not required, since this effect on 

the girder strength tends to be relatively minor compared to the compression flange response. 

White et al. (2001) show that Eq. (6) gives accurate to conservative estimates of the flange 

second-order lateral bending stresses. The purpose of Eq. (6) is to guard conservatively against 

large unbraced lengths in which second-order lateral bending effects are significant. The 

Engineer should be particularly mindful of the amplified compression flange lateral bending in 

exterior girders due to eccentric concrete deck overhang loads during construction. In situations 

where the amplification given by these equations is large, the Engineer may wish to consider 

using an effective length factor K < 1 in the calculation of Fe.LTB (using the procedure outlined in 

Section 5.3.5 of this module). In cases where the amplification of construction stresses is large, a 

second alternative is to conduct a direct geometric nonlinear analysis to determine the second-

order effects within the superstructure more accurately. In the final constructed condition, the 

above amplification typically is applied only to the bottom flange in negative moment regions of 

continuous spans. In this case, Fe.LTB is increased significantly due to the moment gradient in 

these regions, via the moment gradient modifier Cb (see Section 5.3.5).  

 

5.3.7.3 One-third rule concept 

 

Figure 71 compares the result from Eq. (2) to the theoretical fully plastic resistance for several 

doubly-symmetric noncomposite compact-flange, compact-web cross-sections. Figure 72 shows 

a sketch of a typical fully plastic stress distribution on this type of cross-section. The equations 

for the fully plastic cross-section resistances are based on the original research by Mozer et al. 

(1971) and are summarized by White and Grubb (2005). The specific stress distribution shown in 

Figure 72 is associated with equal and opposite lateral bending in each of the equal-size flanges 

(i.e., warping of the flanges due to nonuniform torsion). However, the solution is the same if one 

considers equal flange lateral bending moments due to minor-axis bending.  
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Figure 71  Comparison of the AASHTO (2014) one-third rule equation to the theoretical 

fully-plastic cross-section resistance for several doubly-symmetric noncomposite compact-

flange, compact-web I-sections (adapted from White and Grubb (2005)). 

 

One can observe that, within the limit given by Eq. (5), the one-third rule equation (Eq. (2)) 

provides an accurate to somewhat conservative estimate of the theoretical cross-section 

resistances for the different web-to-flange area ratios, Aw/Af, shown in Figure 71. In the limit that 

Aw/Af is taken equal to zero, the same approximation is provided by both Eq. (2) and Eq. (1). The 

comparison of the theoretical and approximate equations shown in Figure 70 is useful for gaining 

a conceptual understanding of the one-third rule equations in the limit of compact-flange, 

compact-web, compactly-braced noncomposite members. Also, Schilling (1996) and Yoo and 

Davidson (1997) present other useful cross-section yield interaction relationships. However, 

cross-section yield interaction equations are limited in their ability to fully characterize the 

combined influence of distributed yielding along the member lengths along with the various 

stability effects (FLB, LTB and web bend buckling). Furthermore, yield interaction equations 

generally do not reduce to the resistance equations for straight members subjected only to major-

axis bending in the limit that f = 0.  

 

Equations (1) and (2) are a basic extension of the one-third rule approximation of the above 

theoretical cross-section resistances to address the influence of general yielding and stability 

limit states on the member resistance. The basic extension is accomplished simply by changing 

the flange yield strength, Fyf, to fFn in Eq. (1) and by changing the section plastic moment 

resistance, Mp, to fMn in Eq. (2). The 1/3 coefficient accurately captures the strength interaction 

including the various yielding and stability effects (White et al. 2001). The extension from cross-

section equations to member equations is ad hoc, but it is similar in many respects to the 

development of the AISC (2010) and AASHTO (2014) general beam-column interaction 

relationships. The shape of the interaction (i.e., the slope of the line relating fbu and f in Eq. (1) 

or Mu and f in Eq. (2)) is based on curve fitting. Equations (1) and (2) are thus semi-analytical 

and semi-empirical. White and Grubb (2005) provide a summary of the correlation of Eqs. (1) 

and (2) with analytical, numerical and experimental results.  
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Figure 72  Sketch of a fully plastic stress didtribution, incluifng flange lateral bending. 

 

5.3.8  Shear Strength 

 

5.3.8.1 General 

 

AASHTO (2014) Article 6.10.9.3 bases the I-section member shear resistance either on the web 

shear buckling capacity or an idealized additive contribution of the web shear buckling and 

postbuckling resistances. The web elastic shear buckling capacity may be expressed as  
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 (5.3.8-1) 

 

which is the classical plate buckling equation multiplied by the web area, Dtw, but with the 

buckling coefficient, k, corresponding to pure shear loading. This coefficient is taken as  
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 (5.3.8-2a) 

 (AASHTO 6.10.9.3.2-7) 

 

for stiffened webs, i.e., webs with transverse stiffeners (referred to as transversely-stiffened) or 

with transverse and longitudinal stiffeners (referred to as longitudinally-stiffened) and in which 

the transverse stiffeners are spaced within certain maximum limits, and it is taken as  

 

k = 5 (5.3.8-2b) 

 

for unstiffened webs. These equations are a simple approximation of analytical buckling 

solutions for isolated panels with ideal simply-supported edge conditions subjected to pure shear 

loading (Ziemian 2010). They are applied to the average shear stress in the context of I-girder 

webs. Therefore, the ratio of the AASHTO (2014) elastic shear buckling strength to the web 

plastic shear capacity may be written as 
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Where 
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3
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 (AASHTO 6.10.9.2-2) 

 

is the fully plastic resistance of the web based on the von Mises yield criterion and yw = Fyw / 

3 . Similar to the developments for plates in uniform axial compression discussed in Section 

5.2.4 of this module, inelastic buckling is assumed to occur when the web average shear stress 

reaches a certain fraction of the strength yw corresponding to full yielding. Inelastic buckling is 

assumed for Cel > 0.8, which is higher than for uniform compression because the effect of 

residual stress is less. The resulting AASHTO (2014) Article 6.10.9.3 web shear buckling 

resistance (elastic or inelastic) is expressed as a fraction of the fully plastic shear strength (C) as 

follows:  

 

For Cel < 0.8 or 1.40
w yw

D Ek

t F
   (elastic buckling) 

C = Cel (5.3.8-5a) 

 (AASHTO 6.10.9.3.2-6)  

 

and for Cel > 0.8  
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    (inelastic buckling) (5.3.8-5b) 

  (AASHTO 6.10.9.3.2-5) 

 

Lastly, the above inelastic shear buckling equation gives  

 

C = 1 (full web plastification)  (5.3.8-5c) 

 (AASHTO 6.10.9.3.2-4) 

 

at Cel > 1.25 or 1.12
w yw

D Ek

t F
 . 

 

AASHTO (2014) requires that webs with transverse stiffeners spaced at do > 3D or webs with 

one or more longitudinal stiffeners and transverse stiffeners spaced at do > 1.5D shall be 

considered as unstiffened. In these cases, the shear resistance is limited to the shear buckling 

design resistance 
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vVn = 1.0 C Vp (5.3.8-6) 

 (AASHTO 6.10.9.2-1) 

 

However, webs with closer transverse stiffener spacing are considered as stiffened. The 

resistance for these types of webs is taken as the additive combination of the above shear 

buckling resistance with a representation of the shear postbuckling strength from Basler’s (1961) 

seminal research. For members where the ratio of the web area to the average flange area is 

smaller than 2.5, i.e.,  

 

2
2.5

( )

w

fc fc ft ft

Dt

b t b t



 (5.3.8-7) 

 (AASHTO 6.10.9.3.2-1) 

 

the sum of the web buckling and postbuckling design resistances is expressed as 
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 (AASHTO 6.10.9.3.2-2) 

 

whereas for members that have smaller flanges relative to the web area, this sum is written as 
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 (AASHTO 6.10.9.3.2-8) 

 

The second term inside the square brackets in each of the above equations is the web 

postbuckling strength based on Basler’s (1961) theory. Both of the above equations are based on 

the assumption that the web develops tensile postbuckling stresses (i.e., a tension field) along a 

diagonal in each of the web panels as shown in Figure 73, in addition to the shear buckling 

stresses. In determining the slope of this tension field, , Basler assumes that only an effective 

band, s, takes part in transmitting the additional tension (i.e., the flanges are assumed to provide 

zero anchorage to the theoretical tension field). The maximum resistance is obtained when 

yielding occurs due to the combination of the tension field stress plus the initial web shear 

buckling stress. The angle  is determined to maximize the predicted postbuckling contribution. 

However, when the ultimate shear force given by Eq. (8) is determined, a complete tension field 

is assumed at the orientation  throughout the entire web. Basler (1963) acknowledges this 

inconsistency, and illustrates that the flanges are actually not loaded to the extent required by his 

theory in physical tests. Nevertheless, he argues that his theory still provides an acceptable 

characterization of I-girder shear strengths.  
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Figure 73  Assumed tension field used in determining the angle  implicit in Basler’s (1961) 

shear postbuckling strength (Eq. (8)), and used in determining the “true Basler” shear 

resistance (Eq. (9)) 

 

Equation (9) is referred to in the literature as the “true Basler” shear resistance (e.g., see Porter et 

al. (1975) and Wolchuk and Mayrbaurl (1980)). This equation is determined by consistently 

applying the idealization shown in Figure 73 throughout the formulation. (There is a 

typographical error in the equation for the true Basler shear strength in Porter et al. (1975); the 

correct expression is as provided in Eq. (9).) 

 

It should be obvious to the reader that the above idealizations are only a very simplified 

representation of the true web response. Numerous additional web shear failure theories have 

been postulated since Basler’s original research (e.g., see Ziemian (2010)). The large number of 

these idealizations in itself is evidence of the fact that the corresponding behavior is complex and 

tends to defy explanation by basic strength of materials models. Recent studies such as Jung and 

White (2010b), Yoo and Lee (2006) and Kim et al. (2007) have provided further insight into the 

detailed force transfer mechanisms associated with the web ultimate shear resistance. These 

studies show that the force transfer mechanisms can differ substantially from the various failure 

theories. Nevertheless, the ability of Eqs. (8) and (9) to provide a reasonable prediction of 

experimental test results is irrefutable. White and Barker (2008) have recently studied the 

predictions by 12 different models using a data set of 129 experimental high-shear low-moment 

tests, including 30 hybrid and 11 horizontally curved I-girders. They conclude that Basler’s 

model provides the best combination of accuracy and simplicity of the models considered.  

 

White et al. (2008) study the predictions for the above 129 tests plus an additional 57 tests 

involving combined high-shear and high-moment, including 21 additional hybrid girders. Their 

results indicate that within the constraint of Eq. (7) plus the AASHTO (2014) proportioning 

limits discussed in Section 5.3.2 of this module, the combination of Eq. (8) for the shear 

resistance and the AASHTO (2014) equations outlined in Sections 5.3.3 through 5.3.5 for the 

flexural resistance gives a sufficient representation of the high-shear high-moment resistance 

without the consideration of moment-shear strength interaction. In other words, the same 

resistance factor v = 1.0 is justified for both high-shear low-moment and high-shear high-

moment, and the same resistance factor f = 1.0 is justified for both high-moment low-shear and 

high-moment high-shear. Also, White et al. (2008) show that for girders with small flanges that 

violate Eq. (7), the capacities tend to be smaller but are predicted adequately when Eq. (9) is 
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used for the shear resistance. Extensive finite element parametric studies have been conducted by 

Hash (2001), White et al. (2001), Aydemir et al. (2004), Jung and White (2006), Kim et al. 

(2007) and others that support the above conclusions and help address the complete range of 

potential I-girder designs including hybrid and curved I-girders with combined high-moment and 

high-shear. 

 

One important condition associated with the above conclusions is that the members must be 

checked in general using the maximum shear within a given web panel for Vu, the maximum 

moment (or flange stress) within the web panel for Mu or fbu when the flexural resistance is 

governed by FLB or TFY, and the maximum moment (or flange stress) within the unbraced 

length under consideration for Mu or fbu when the flexural resistance is governed by LTB. Some 

of the developments in the past have suggested that the moment should be checked at the smaller 

of D/2 or do/2 from a transverse stiffener location. The use of Mu at min (D/2, do/2) in plotting 

the experimental results leads to a false indication of significant M-V interaction. At regions of 

high shear, the moment drops rapidly as one moves away from the peak moment position. This 

drop is required for equilibrium, i.e., dM/dx = V. It is not due to M-V interaction. Use of the 

maximum moment or flange stress for the flexural resistance check in regions of combined high-

moment and high-shear is consistent with the established procedures for checking of regions 

subjected to high-moment low-shear (White et al. 2008).  

 

5.3.8.2 Longitudinally-stiffened members 

 

The contribution of the longitudinal stiffeners to the shear resistance is neglected in AASHTO 

(2014). Longitudinal stiffeners divide a web panel into sub-panels. Cooper (1967) calculates the 

full web shear resistance for these member types by summing the shear resistance of the 

subpanels. However, when a single longitudinal stiffener is located near its optimum position for 

flexure, the corresponding enhancement of the shear capacity is relatively small. Furthermore, as 

noted previously in Section 5.3.5 of this module, the longitudinal stiffener requirements in 

AASHTO (2014) Article 6.10.11.3 are not sufficient to develop the general postbuckling 

resistance of the web panels. Neglecting the contribution of the longitudinal stiffeners to the web 

shear capacity is consistent with neglecting their contribution to the flexural capacity in cases 

where fbu is larger than the longitudinally-stiffened web bend buckling resistance. These 

conservative assumptions make it possible to neglect moment-shear interaction for 

longitudinally-stiffened I-girders. 

 

5.3.8.3  Variable web depth members  

 

Falby and Lee (1976) address the shear design of I-section members with linearly tapered webs. 

They indicate that the Basler shear resistance model can be used, with the average web depth 

replacing the uniform depth, as long as the angle between the flanges is less than about 4 

degrees. Also, they suggest a simple modification to Basler’s model for moderate tapers larger 

than 4 degrees, as well as a more conservative model based on an assumed lower-bound tension-

field stress distribution for tapers larger than about 7 degrees. It appears that no studies have 

been conducted to ascertain the shear capacity of I-girders with parabolic or fish-belly haunches. 

Conservative approximations can be made using concepts similar to those discussed by Falby 

and Lee (1976).  
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AASHTO (2014) Article C6.10.1.4 discusses the positive or negative contribution of the force 

within an inclined flange to the I-girder shear resistance. Falby and Lee (1976) do not consider 

this contribution. Also, Article C6.10.1.4 suggests that this flange contribution is difficult to 

calculate in general, since numerous sets of concurrent moments and shears must be evaluated to 

determine the critical combination. Therefore, this contribution is commonly neglected. 

However, the vertical component of the inclined flange force can provide a substantial 

contribution to the overall shear resistance, reducing the shear force that the web must resist near 

the interior supports in continuous-span I-girders. In turn, the bottom flange normal stress is 

increased due to the bottom flange slope within a haunch. Article C6.10.1.4 suggests that this 

increase can be estimated as 

 

f = Ph / Af cos  (5.3.8-10a) 

 (AASHTO C6.10.1.4-1) 

 

Where 

 

u
h f

x

M
P A

S
  (5.3.8-10b) 

 (AASHTO C6.10.1.4-2) 

 

is the horizontal component of the flange force required to develop the bending moment Mu,  

 

Af = area of the inclined bottom flange 

 

 = angle of inclination of the bottom flange, and 

 

Sx = elastic section modulus to the inclined bottom flange 

   

Equation (10b) assumes zero axial force in the horizontal direction. If this force is non-zero, the 

corresponding girder axial stress should also be included in the calculation of Ph.  

 

5.3.8.4 Web transverse stiffeners 

 

AASHTO (2014) Article 6.10.11.1 addresses the design requirements for web transverse 

stiffeners. Numerous research studies have observed that the bending rigidity is the dominant 

parameter that governs the performance of transverse stiffeners. This is true both for developing 

the shear buckling as well as the combined shear buckling and postbuckling resistance of 

stiffened webs (Kim et al. 2007; Yoo and Lee 2006; Lee et al. 2003; Stanway et al. 1996; Rahal 

and Harding 1990; Horne and Grayson 1983). Although there is some evidence of axial stresses 

in the transverse stiffeners due to tension field loading, these effects are relatively minor 

compared to the lateral loading on the stiffeners due to the postbuckling response of the web 

panels. Furthermore, several research studies have shown that prior AASHTO stiffener area 

requirements were more than adequate in certain cases and less than adequate in others in 

maintaining a line of near zero lateral deflection along the line of the stiffener (Kim et al. 2007; 

Lee et al. 2003; Xie 2000). Also, the studies show that different types of transverse stiffeners 
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with comparable moments of inertia, but with widely different areas, have essentially the same 

strength performance. Webs with transverse stiffeners attached such that the stiffeners only 

provide lateral restraint perform similarly to webs in which a load path exists to transfer tension-

field axial forces into the stiffeners. Lastly, Kim et al. (2007) observe that the demands on the 

transverse stiffeners are very similar in comparable straight and curved I-girders that satisfy the 

AASHTO (2014) proportioning requirements. Based on these research results, AASHTO (2014) 

Article 6.10.11.1 no longer specifies any area requirement for transverse stiffeners in stiffened 

webs. Rather, several equations are specified for the transverse stiffener lateral rigidity that apply 

equally to straight and curved I-section members.  

 

For stiffeners adjacent to web panels in which neither panel supports shear forces larger than the 

shear buckling resistance, the stiffener moment of inertia, taken about the edge in contact with 

the web for single stiffeners and about the mid-thickness of the web for stiffener pairs, is 

required to satisfy the smaller of the following limits: 

 
3

t wI bt J  (5.3.8-11) 

 (AASHTO 6.10.11.1.3-1) 
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 (AASHTO 6.10.11.1.3-2) 

where  

 

b = the smaller of do and D,  

J = 

 
2
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(5.3.8-13)  

(AASHTO 6.10.11.1.3-3) 

 

t = the larger of Fyw/Fe.s and 1.0,  

Fe.s = 
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2
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  

(5.3.8-14) 

(AASHTO 6.10.11.1.3-4) 

bt = the width of a rectangular plate stiffener,   

tp = the thickness of a rectangular plate stiffener, 

and 

 

Fys = the specified minimum yield strength of the 

stiffener.  

 

 

Equation (11) is the fundamental stiffener rigidity necessary to develop the calculated AASHTO 

web shear buckling resistance. For webs proportioned to develop their full plastic shear capacity 

(i.e., C = 1 in Eq. 5.3.8-5c), the rigidity requirement based on this equation becomes excessive as 

the web is made more and more stocky. Equation (12) generally gives a required rigidity that is 

slightly larger than that required by Eq. (11) at the web slenderness D/tw just sufficient to achieve 

C = 1. For webs in which the It requirement from Eq. (11) is larger than that from Eq. (12), the 

requirement from Eq. (12) is sufficient to develop the web plastic shear capacity (C = 1) (Kim et 

al. 2007). For webs in which the nominal shear buckling capacity is less than Vp (i.e., C < 1), Eq. 

(11) typically governs. The rigidity requirement defined by this equation is constant for do/D > 

1.0, but increases substantially for do/D < 1 as shown by Figure 74.  
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Figure 74  Normalized transverse stiffener bending rigidity It / Dtw
3
 necessary to develop 

the AASHTO (2014) web shear buckling resistance Vcr. 

 

That is, the demand on the transverse stiffeners to hold a line of near zero lateral displacement at 

the web shear buckling load is substantially larger when the stiffeners are spaced at do < D.  

 

For transverse stiffeners adjacent to web panels in which the shear force is larger than the shear 

buckling resistance, such that the web tension-field resistance is required in one or both panels, 

AASHTO (2014) specifies that the moment of inertia of the transverse stiffeners must satisfy Eq. 

(12). As noted above, Eq. (12) generally requires a stiffener size slightly larger than that 

necessary to develop the web fully plastic shear capacity, were the web to be made thick enough 

such that C = 1 for a given panel aspect ratio do/D, web yield strength Fyw and web depth D. Kim 

et al. (2007) observe that this stiffener size is always accurate to somewhat conservative 

compared to the size necessary to develop the web shear postbuckling resistance for thinner 

webs. Kim and White (2013) provide addional discussion of the background to these provisions. 

 

The term t in Eq. (12) accounts conservatively for the effect of early yielding in transverse 

stiffeners with Fys < Fyw and for the effect of potential local buckling of plate stiffeners having a 

relatively large width-to-thickness ratio bt/tp. The definition of the stiffener local buckling stress 

Fe.s is retained from AASHTO (1998).  

 

For longitudinally-stiffened girders, Article 6.10.11.1.3 also requires that the transverse stiffeners 

satisfy  
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 (5.3.8-15) 

 (AASHTO 6.10.11.1.5) 

 

This equation is retained from prior AASHTO Specifications. It is a liberalization (by a factor of 

three) of the transverse stiffener section modulus recommended by Cooper (1967). Equation (15) 

tends to govern the transverse stiffener size only for horizontally curved I-girders with 
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longitudinal stiffeners, relatively large do/R values (such that the curvature parameter Z in the 

Article 6.10.11.3.3 provisions for the longitudinal stiffener requirements is at its maximum value 

of 10), do/D close to 1.5, and D/tw less than about 175.  

 

Equation (12) facilitates the selection of a single size for all the transverse stiffeners in a given 

girder or set of girders, since it is independent of D/tw and do/D. AASHTO (2014) also specifies 

several other transverse stiffener dimensional requirements that ensure that the stiffener width is 

not overly small relative to the widest compression flange or the largest web depth within the 

field section under consideration. These basic dimensional requirements govern in a number of 

practical cases.  

 

5.3.9 Shear Connectors 

 

AASHTO (2014) Article 6.10.10 addresses the design of the shear connectors between the deck 

and the steel I-sections for composite construction. Both fatigue and strength limit states must be 

considered in selecting the number, type and size of the shear connectors. This section focuses 

on the strength behavior of the shear connectors in horizontally curved I-girders. In horizontally 

curved girders, the shear connectors can be subjected to significant lateral (i.e., radial) shear 

forces in addition to longitudinal shear forces. In the limit that the girder is straight, the lateral 

shear forces are relatively small and are generally neglected. The calculation of the longitudinal 

shear forces is the same in both straight and curved I-girders. Therefore, the behavior of the shear 

connectors in straight composite I-girders may be considered as a special case of the behavior in 

curved I-girders.  

Pp

Pp

bs

 
 

Figure 75  Idealized free-body diagrams of the slab and the steel I-section for a single I-

girder taken from approximately one-half of the span of a hypothetical simple-span 

composite I-girder bridge. 

 

Figure 75 shows idealized free-body diagrams of the slab and the steel I-section for a single I-

girder taken from approximately one-half of the span of a hypothetical simple-span composite I-

girder bridge. All the forces acting on each of the elements are indicated in the figure, with the 

exception of: 

 

1. Dead loads and vertical live loads applied directly to the I-girder, 

 

2. Slab membrane and plate bending forces and moments transferred from adjacent I-girders 

along the circumferential cuts made through the slab thickness to isolate the effective 



 168 

width of the slab over the I-girder being considered, bs, from the remainder of the slab, 

and  

 

3. Vertical forces transferred between the slab and the I-girder, including any vertical forces 

associated with the torsional restraint of the I-girder provided by the slab.  

 

The force labeled Pp in the figure is the total force developed in the slab by a maximum positive 

major-axis bending moment equal to the corresponding cross-section plastic moment Mp. Article 

6.10.10.4.2 assumes that the maximum positive bending moment is located approximately at the 

position of the maximum positive live load plus impact moment. This position is selected 

because it is easier to locate than the position of the total maximum dead- plus live-load moment. 

The force Pp is calculated as 
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 (5.3.9-1) 

 (AASHTO 6.10.10.4.2-2 & 6.10.10.4.2-3) 

 

Any reduction in the cross-section major-axis positive bending moment from Eqs. (3-2), (5.3.3-

3), (5.3.4-1 & 2), (5.3.7-1) and/or (5.3.7-2) is neglected.  

 

For straight I-girders, Article 6.10.10.4.2 requires that the shear connectors located between the 

maximum moment cross-section and the simply-supported end of the girder must develop the 

total force Pp. No other forces acting on the shear connectors need to be considered for these 

member types. Furthermore, only a slight deformation around more heavily stressed shear 

connectors is needed to redistribute the horizontal shear forces to less heavily stressed 

connectors. Therefore, the total required number of connectors within the above I-girder length 

may be calculated as  

 

p

r

P
n

Q
   (5.3.9-2) 

 (AASHTO 6.10.10.4.1-2) 

Where 

 

Qr = scQn = 0.85Qn (5.3.9-3) 

 (AASHTO 6.10.10.4.1-1) 

 

is the factored shear resistance of a single connector.  
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Figure 76  Plan view of the slab in the idealized free-body diagram of Figure 75. 
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Figure 77  Plan view simplification of the free-body diagram of the slab in Figure 76. 

 

For the horizontally curved I-girder illustrated in Figure 75, potentially significant radial shear 

forces must be accounted for in addition to the above longitudinal forces. Colville (1972) 

suggests the simplified model for calculation of these forces illustrated in Figure 76 and Figure 

77. Figure 76 is a plan view of the slab free-body diagram from Figure 75. Figure 77 is an 

idealization of this free-body diagram explained below. One can observe that the force Pp 

developed at the maximum moment cross-section is not collinear with the shear connectors. This 

creates a secondary radial loading effect on the connectors. The connector radial loads may be 

estimated by making the following assumptions: 

 

1. The influence of the slab forces and moments within the circumferential cut through the 

slab thickness to isolate the effective width bs from the remainder of the slab are 

neglected. That is, the shear connectors are assumed to be the only components available 

to equilibrate the force Pp within the plan view of Figure 76.  

 

2. Any differences in the slab stresses across the cut at the maximum moment location, 

which would give an eccentricity to the force Pp on this cross-section, are neglected.  

 

3. The shear connectors are assumed to be spaced uniformly along a straight chord between 

the ends A and B shown in Figure 76. This idealization is illustrated in Figure 77. The 

shear connectors are actually located along the curved axis AB in Figure 76. By 

assuming that they are located along the straight chord AOB (see Figure 77), the 

equations are simplified and the resulting connector forces are estimated conservatively. 

Also, since the radius R is typically large compared to the length R, the error caused by 

this assumption is small.  

 

4. The radial forces in the shear connectors are normal to the line AOB in Figure 77 and are 

proportional to the distance of the connectors from point O.  
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Based on the above assumptions, the resultant of the connector forces may be taken as a force Pp 

acting at the centroid of the group of connectors (taken as point O), plus a moment about a 

vertical axis through point O equal to PR (1 – cos ) / 2. The force in each of the extreme 

connectors is equal to the vector sum of the two components, namely  

 

P  = Pp / n (5.3.9-4) 

 

where n is the total number of connectors along the girder length under consideration, and the 

lateral force (perpendicular to AOB)  
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where n* is the number of shear connectors placed at each cross-section. If n/n* is assumed to be 

large compared to one, Eq. (5a) simplifies to  
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  (5.3.9-5b) 

 

Furthermore, for all practical values of the subtended angle  between the maximum moment 

location and the simply-supported end of the girder, Eq. (5b) is closely approximated by  

 

1.5 pP
F

n


  (5.3.9-5c) 

 

where  is expressed in radians. AASHTO (2014) Article 6.10.10.4.2 neglects the 1.5 coefficient 

in Eq. (5c). This is equivalent to assuming that the radial shear forces are the same magnitude in 

all of the connectors, and is justified by the conservative nature of the assumption that the 

connectors are all located along AOB. Also, Article 6.10.10.4.2 assumes that F  is perpendicular 

to P  in writing the vector sum of the shear forces. This leads to a total force  

 
2 2

p pP P F   (5.3.9-6) 

 (AASHTO 6.10.10.4.2-1) 

 

that replaces Pp in Eq. (2), where  

 

p pF n F P    (5.3.9-7) 

 (AASHTO 6.10.10.4.2-4) 

 

Colville (1972) discusses other contributions to the shear connector radial forces that come from 

the uniform St. Venant and nonuniform warping torsion of the composite I-girder between the 

brace points, where the brace points are indicated by the larger radial arrows on the free-body 

diagram of the steel I-section in Figure 75. He concludes that these forces are small compared to 
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the above forces P  and F . Nevertheless, the assumption that the connector radial forces 

increase linearly with their distance from point O in Figure 77 is inconsistent with Colville’s 

open-section thin-walled beam theory analysis of the composite I-section member to determine 

the connector forces due to St. Venant and warping torques. The above calculation of the 

connector radial loading effect from Eqs. (6) and (7) should be considered as no more than a 

reasonable but coarse approximation of the true radial loading effects on the shear connectors. 

The above equations are based on a constant radius of curvature R between the maximum 

moment location and the simply-supported girder ends. For more general girder geometries, R 

may be taken conservatively as the minimum girder radius over the length under consideration.  

 

A more conservative estimate of the shear connector radial force is used in Article 6.10.10.1.2 

for calculating the connector radial fatigue shear range for horizontally curved bridges and in 

straight bridges with skews exceeding 20
o
. If written in terms of the forces under strength load 

conditions, these estimates would be 

 

.

1b
bot bu bot

w

L
F A f

R n
  (5.3.9-8) 

 (AASHTO 6.10.10.1.2-4) 
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 (AASHTO 6.10.10.1.2-5) 

where  

 

Abot  = area of the bottom flange, 

 

 

fbu.bot  = elastically computed bottom flange stress, 

 

Lb  = distance between brace points,  

 

R  = horizontal radius of curvature at the brace point under consideration, 

 

Fc  = cross-frame or diaphragm force at the top flange, taken as the total radial force 

transferred to the I-girder from all the components of the cross-frames or 

diaphragms on each side of the girder at the location under consideration (the 

assumption associated with this calculation is that this total radial force must be 

balanced by a shear that is transferred to the slab by the shear connectors), and 

 

nw = number of shear connectors within an effective length of the deck over which the 

total radial force from the cross-frames is developed, taken as 48 inches at interior 

locations and 24 inches at end supports for calculation of the connector radial 

fatigue shear range in Article 6.10.10.1.2.  

 

AASHTO (2014) Article 6.10.10.4 takes Eqs. (6) and (7) as a sufficient estimate of the shear 

connector radial loads under strength conditions. It uses formulas analogous to Eqs. (8) and (9) 
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only for checking the fatigue shear range in horizontally curved bridges and in bridges with 

skews exceeding 20
o
.  

 

Colville (1972) also discusses a conservative calculation of the vertical (uplift) forces on shear 

connectors due to the restraint provided to twisting of the steel I-girders from the bridge deck. 

His equations for estimating these forces tend to be small compared to the vector sum of the 

longitudinal and radial forces. Furthermore, the downward dead and live loads located above the 

I-girder-to-slab interface counteract these local uplift forces. Therefore, AASHTO (2014) Article 

6.10.10 does not require any consideration of uplift forces on the shear connectors. Article 

6.10.10.1.1 simply specifies that the connectors shall be capable of resisting both horizontal and 

vertical movement between the concrete and the steel.  

 

AASHTO (2014) Article 6.10.10.4.3 specifies the nominal shear resistance of a single stud shear 

connector embedded in a concrete deck as 

 

0.5n sc c c sc uQ A f E A F   (5.3.9-10) 

 (AASHTO 6.10.10.4.3-1, AISC I3-3) 

 

where 

Asc = cross-sectional area of the stud shear connector,  

 

Ec  = modulus of elasticity of the deck concrete,  

 

fc' = compressive strength of the deck concrete,  

 

Fu  = specified minimum tensile strength of the stud shear connector.  

   

Also, an alternate equation is specified for the strength of less commonly used channel shear 

connectors. Channel shear connectors should not be used in curved bridges or bridges with 

skews larger than 20
o
 due to the combined longitudinal and radial loading effects.  

 

The above calculations of Pp and Fp apply only to simple span bridges, and to the length between 

the position of the maximum positive moment (taken as the maximum live load plus impact 

moment) and the adjacent point of zero moment in continuous-span bridges that are 

noncomposite for negative flexure in the final condition. For I-girders in continuous-span bridges 

that are composite for negative flexure in the final condition, a larger total longitudinal force 

must be developed in the length between the maximum positive moment position and the 

centerline of an adjacent interior support. This is handled by replacing Pp in Eqs. (1), (2), (6) and 

(7) by  

 

PT = Pp + Pn   (5.3.9-11) 

  (AASHTO 6.10.10.4.2-6) 

 

where Pn is an estimate of the total force developed in the negative moment cross-section of the 

concrete deck over the interior support. That is, the model of Figure 76 is replaced by the one 

shown in Figure 78. The force Pn is calculated as  
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Figure 78  Plan view free-body diagram of the slab between the maximum positive moment 

and maximum negative moment positions. 

 

at the interior support cross-section. The first term in this equation is intended as a conservative 

estimate of the combined contribution of both the longitudinal reinforcement and the concrete 

that remains effective in tension at the maximum negative moment cross-section.  

 

5.3.10 Secondary Limit States 

 

This section highlights a number of strength limit states pertaining to I-section flexural members 

that are somewhat separate from the overall flow and logic of the behavioral considerations 

discussed in the previous sections. Nevertheless, all strength limit states are essential to the 

proper structural performance.  

 

5.3.10.1 Net section fracture 

 

AASHTO (2014) Article 6.10.1.8 addresses the potential fracture through the net section of 

tension flanges containing holes typically used for connectors such as bolts. This article 

implements the check 

 

0.84 n
t u yt

g

A
f F F

A
   (5.3.10-1) 

  (AASHTO 6.10.1.8-1) 

where  

ft = the elastically computed stress on the gross area of the tension flange, not 

including flange lateral bending but presumably including the stress due to tensile 

axial force if it exists,  

 

An = the net tension flange area at the holes, calculated as discussed in Section 5.1.1 of 

this module, 
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Ag =  the gross area of the tension flange, and  

 

Fu = the specified minimum tensile strength of the tension flange.  

 

By multiplying each of the expressions in Eq. (1) by Ag and noting that 0.84  u / y = 0.80 / 

0.95, one can observe that this equation effectively handles the tension flange as a tension 

member according to AASHTO Article 6.8 (discussed in Section 5.1.1) and ensures that tension 

yielding will govern relative to tension fracture based on these provisions. Dexter and Altstadt 

(2004) indicate that due to the constraint provided by the web, net section fracture of the tension 

flange is less critical than the tension member equations imply. However, the splice design 

provisions of Article 6.13.6.1.4 do not consider the contribution of substantial web yielding to 

the flexural resistance. Therefore, potential liberalization of Eq. (1) should also include the 

consideration of substantial web yielding in the splice design provisions. 

 

5.3.10.2 Web bend buckling 

 

The web bend buckling resistance does not enter directly into the flexural resistance of I-section 

members at strength load levels except in the context of influencing when the web load-shedding 

parameter Rb is less than one, via Eqs. (5.3.5-1) and (5.3.5-4). However, the AASHTO Article 

6.10.3 and 6.10.4.2 provisions for constructability and for the SERVICE II permanent deflection 

limit states directly restrict the elastically computed compression flange stress to the nominal 

web bend buckling stress as a simple device to help limit web plate bending and transverse 

displacements under these conditions. Also, as noted in AASHTO Article 6.10.5.3 on special 

fatigue requirements for webs, the Article 6.10.4.2 provisions with respect to web bend buckling 

always govern relative to a comparable check for the fatigue load combinations of this article. 

Therefore, theoretical web bend buckling is effectively prevented also under the AASHTO 

(2014) factored fatigue loading. 

 

AASHTO Article 6.10.1.9.1 defines the web bend buckling resistance as  

 

 
2

0.9

/
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w

Ek
F

D t
  (5.3.10-2) 

  (AASHTO 6.10.1.9.1-1) 

 

which is again the classical elastic plate buckling equation shown previously as Eqs. (5.2.4-1) 

and (5.3.8-1), but with another expression for the buckling coefficient k. AASHTO Article 

6.10.1.9.1 defines the web bend buckling coefficient as  

 

2

9

( / )c

k
D D

  (5.3.10-3) 

  (AASHTO 6.10.1.9.1-2) 

 

for webs without longitudinal stiffeners, and Article 6.10.1.9.2 defines the web bend buckling 

coefficient as  
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  (AASHTO 6.10.1.9.2-1) 

 

for longitudinally-stiffened webs with ds/Dc > 0.4 and by  
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  (AASHTO 6.10.1.9.2-2) 

 

for other longitudinally-stiffened webs, where ds is the depth between the compression flange 

and the longitudinal stiffener. One can observe that the web bend buckling resistance for webs 

without longitudinal stiffeners is actually based on the slenderness 2Dc/tw, and that the 

corresponding bend buckling coefficient is k = 36. The Eq. (2) form is specified so that a single 

equation can be applied for webs with and without longitudinal stiffeners. For a doubly-

symmetric I-section without longitudinal stiffeners, the above constant k = 36 is approximately 

equal to kss + 0.8(ksf – kss), where kss = 23.9 and ksf = 39.6 are the bend buckling coefficients for 

simply-supported and fully-restrained longitudinal edge conditions respectively (Timoshenko 

and Gere 1961). For singly-symmetric I-sections with Dc  D/2, Eqs. (2) and (3) provide a 

reasonably accurate approximation of the theoretical bend buckling resistance (Ziemian 2010) 

consistent with k = kss + 0.8(ksf – kss).  

 

For webs without longitudinal stiffeners, Eqs. (2) and (3) predict Fcrw = Fyc at 2Dc/tw = rw given 

by Eq. (5.3.5-1). The potential use of Fcrw > Fyw in hybrid members is justified since the flange 

tends to restrain the longitudinal and plate bending strains associated with web bend buckling for 

nominal compression flange stresses up to RhFyc. ASCE (1968) recommends that web bend 

buckling does not need to be considered in hybrid sections with Fyc up to 100 ksi as long as the 

web slenderness does not exceed 5.87(E/Fyc)
0.5

. AASHTO Article 6.10.1.9 adopts a more 

conservative approach than recommended by ASCE (1968) for Fyw/Fyc < 0.7 by limiting Fcrw to 

the smaller of RhFyc and Fyw/0.7 in its explicit web bend buckling checks. 

 

Equation (2) generally gives Fcrw = Fyc at D/tw = 0.95(Ek/Fyc)
0.5

  as defined by Eq. (5.3.5-4). 

Equations (4), developed by Frank and Helwig (1995), account for the effect of the location of a 

single longitudinal stiffener with respect to the compression flange on the web bend buckling 

resistance. The optimum stiffener position is given by ds/Dc = 0.4, in which case both Eqs. (4a) 

and (4b) give k = 129 for a doubly-symmetric girder. For longitudinally-stiffened webs with 

ds/Dc > 0.4, the web bend buckling deformations occur predominantly within the height ds 

between the longitudinal stiffener and the compression flange. Eq. (4a) results in a web bend 

buckling stress that is constant with respect to ds/tw in this case. For longitudinally-stiffened webs 

with ds/Dc < 0.4, the web bend buckling deformations occur predominantly within the height  (D 

– ds) between the longitudinal stiffener and the tension flange. Equations (4) assume simply-

supported boundary conditions at the flanges. Equation (4a) is limited to a minimum value equal 

to the k for webs without longitudinal stiffeners (Eq. (3)) to recognize the nominal restraint from 
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the flanges in the limit that Eq. (4a) would otherwise predict a smaller Fcrw than if the web did 

not have a longitudinal stiffener.  

 

Aside from its implicit use in determining when load shedding due to the postbuckling actions of 

the web must be considered via the Rb factor, the theoretical web bend buckling stress given by 

Eq. (2) has little significance with respect to the maximum flexural resistance. Article 

C6.10.1.9.1 emphasizes: 

 

“In many experimental tests, noticeable web plate bending deformations and 

associated transverse displacements occur from the onset of load application due to 

initial web out-of-flatness. Because of the stable postbuckling behavior of the web, 

there is no significant change in the rate of increase of the web transverse 

displacements as a function of the applied loads as the theoretical web bend-buckling 

stress is exceeded (Basler et al. 1960). Due to unavoidable geometric imperfections, 

the web bend-buckling behavior is a load-deflection rather than a bifurcation 

problem. The theoretical web-buckling load is used in these Specifications as a 

simple index for controlling the web plate bending strains and transverse 

displacements.”  

 

5.3.10.3 Longitudinal stiffeners 

 

The AASHTO (2014) Article 6.10.11.3 provisions specify the following requirements for the 

design of web longitudinal stiffeners in I-girders subjected to flexure: 

 

1. Web longitudinal stiffeners nominally must not yield when subjected to the idealized 

stress due to major-axis bending, i.e.,  

 

fs < f Rh Fys (5.3.10-5) 

 

(AASHTO 6.10.11.3.1-1) 

where 

fs = the elastic stress at the longitudinal stiffener due to major-axis bending, 

calculated assuming a linear variation in the flexural stress through the 

depth of the web and 

 

Fys = the specified minimum yield strength of the stiffener. 

 

The yield strength of the stiffener is multiplied by the hybrid strength reduction factor to 

account conservatively for the influence of early web yielding on the stiffener stress in 

hybrid members. Article C6.10.11.3 suggests that Rh in Eq. (5) should be taken as the 

value applied to the flanges at the strength limit state. Lateral bending of longitudinal 

stiffeners due to eccentricity of the stiffener with respect to the web plate, and/or due to 

horizontal curvature, is neglected in Eq. (5).  
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2. Web longitudinal stiffeners must not buckle locally prior to reaching their yield strength 

in uniform axial compression. This is achieved by satisfying the following slenderness 

limit, assuming rectangular plate longitudinal stiffeners 

 

0.48s s

ys

E
b t

F
  (5.3.10-6) 

(AASHTO 6.10.11.3.2-1) 

which is Eq. (5.2.4-4) with an assumed plate local buckling coefficient of kc = 0.56. 

 

3. Web longitudinal stiffeners and a portion of the web adjacent to them, acting as an 

equivalent column, must not fail by flexural buckling prior to development of the yield 

strength of the compression flange. This is achieved by:  

 

 Assuming that the equivalent column fails by inelastic buckling,  

 

 Using the traditional CRC column inelastic buckling formula, and 

 

 Assuming a linear variation in the flexural stress through the depth of the web as 

in the first requirement above. 

 

 

These combined idealizations give 
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 (5.3.10-7a) 

 

The stiffener yield strength is multiplied by the hybrid factor, Rh, on the left-hand side of this 

equation, but the hybrid factor is not included in the reduction for column inelastic buckling in 

the square brackets on the left-hand side. The longitudinal stiffener is taken as a simply-

supported column with an effective length equal to the spacing between the transverse stiffeners, 

do, within the reduction for column inelastic buckling. The right-hand side of this equation is 

simply the elastic stress at the location of the longitudinal stiffener when the compression flange 

reaches its yield strength Fyc. If Eq. (7a) is solved for the required radius of gyration of the 

equivalent column, one obtains 
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 (5.3.10-7b) 

 

The Engineer is required to include an effective width of the web of 18tw with the longitudinal 

stiffener in calculating the radius of gyration r. Also, it is required that the radius of gyration 

shall be calculated about the neutral axis of the combined effective cross-section (one is not 

allowed to assume that the neutral axis is located at the edge of the stiffener in contact with the 



 178 

web, as specified for transverse stiffeners). This requirement is based on the recommendations 

by Cooper (1967). Cooper recommended the use of a mean effective width of 20tw based on the 

results of strain measurements reported by Massonnet (1960). The effective width of 18tw is 

specified to conform to traditional assumptions in American bridge design, as discussed by 

Vincent (1969). Lastly, AASHTO (2014) invokes one additional simplification that is justified 

given all the above idealizations and assumptions utilized in arriving at Eq. (7b). Rather than 

make the required radius of gyration a function of ds/Dc, AASHTO Article 6.10.11.3 addresses 

the influence of the location of the longitudinal stiffener solely via Eq. (5) and assumes the 

optimum location ds/Dc = 0.4 in Eq. (7b) to obtain 
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 (AASHTO 6.10.11.3.3-2) 

 

4. Web longitudinal stiffeners must be stiff enough to maintain a line of near zero lateral 

deflection at their juncture with the web plate for load levels up to the calculated bend 

buckling resistance of the web. This is achieved by satisfying  
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 (AASHTO 6.10.11.3.3-1) 

 

where  

 

I = moment of inertia of the longitudinal stiffener including an effective width of the web 

equal to 18tw taken about the neutral axis of the combined section. If Fyw is smaller than 

Fys, the strip of the web included in the effective section shall be reduced by the ratio 

Fyw/Fys. 

 

 = correction factor for horizontal curvature, taken as 1.0 for straight I-girders.  

 

Equation (8) with  = 1 gives a reasonably good fit to the results from Dubas (1948) for the 

required lateral rigidity of longitudinal web stiffeners in doubly-symmetric I-girders with 0.5 < 

do/D < 1.6, a single longitudinal stiffener located at the optimum position ds = D/5, an effective 

width of the web acting with the stiffener of 20tw, and an upper-bound stiffener-to-web area ratio 

As/Aw = As/Dtw of 0.1. Dubas (1948) accounts for the fact that the necessary rigidity depends not 

only on the panel aspect ratio do/D, but also on the ratio of the stiffener area to the total web area 

As/Aw. The required I is smaller for lesser values of As/Aw, and hence Eq. (8) may be considered 

as a reasonable upper bound for the necessary moment of inertia of the combined stiffener and 

web effective width (conservatively taken as 18tw).  
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It is important to recognize that the true web bend buckling resistance is a continuous function of 

the longitudinal stiffener properties. For stiffener I values larger than specified by Eq. (8), the 

web bend buckling resistance asymptotes gradually to a maximum value as I approaches 

infinity. For I values somewhat smaller than specified by Eq. (8), the web bend-buckling 

resistance starts to reduce significantly due to increasing participation of stiffener lateral 

deformations in the web buckling mode. Also, it is important to note that the theoretical web 

bend buckling stress is not necessarily the maximum limit of the flexural resistance. For cases 

where the web violates Eq. (5.3.5-4) and thus the web bend buckling resistance is exceeded, the 

AASHTO (2014) flexural resistance is generally larger, although Rb < 1 is then calculated 

neglecting any benefit of the longitudinal stiffening. However, with respect to strength, the 

longitudinal stiffener should be adequate to ensure the validity of Eqs. (2), (4) and (5.3.5-4).  

 

Equation (8) neglects any influence of the stiffener location, ds/D, or the fraction of the web 

depth in compression, Dc/D, on the required I. Frank and Helwig (1995) show that Eqs. (2) and 

(4) give an accurate to slightly conservative estimate of Fcrw values determined from finite 

element analysis for a wide range of doubly- and singly-symmetric web panels with do/D = 1 

using minimum-size longitudinal stiffeners based on the AASHTO (1998) requirements. For  = 

1, Eqs. (6) and (8) are identical to the AASHTO (1998) requirements except that AASHTO 

(1998) specified that I should be calculated about the edge of the stiffener in contact with the 

web. AASHTO (2014) specifies that I is to be calculated about the true neutral axis for the 

combined stiffener and effective width of the web (18tw) based on Cooper (1967). For Fys = Fyc 

and Rh = 1, Eq. (7c) requires an eight percent larger radius of gyration, r, relative to do, as well as 

the calculation of r = [I / (bsts + 18tw
2
)]

0.5
  using I determined as specified above. Therefore, the 

minimum size longitudinal stiffeners studied by Frank and Helwig (1995) have I values that 

range from 72 to 81 percent of the AASHTO (2014) requirement from Eq. (8), and they have r 

values that range from 64 to 131 percent of the AASHTO (2014) requirement from Eq. (7c). 

Frank and Helwig (1995) point out that one source of conservatism in their study is the fact that 

the longitudinal stiffeners participate in resisting the overall bending applied to the I-girder. That 

is, they do not apply flexural stresses directly to the longitudinal stiffeners in their study, but the 

longitudinal stiffeners tend to attract stress due to their compatibility with the web plate. On this 

basis, it is suggested that the longitudinal stiffeners should not be included in calculating the 

moment of inertia Ix and section moduli Sxc and Sxt for longitudinally-stiffened I-girders.  

 

It is important to note that Eq. (8) and the results from Dubas (1948) are based only on linear 

buckling analysis. Therefore, Eq. (8) gives an I that guarantees only the development of the web 

bend-buckling resistance given by Eqs. (2) and (4). Longitudinal stiffener rigidities as much as 

seven times larger have been found to be necessary to ensure the integrity of the longitudinal 

stiffeners within the postbuckling range of the web response, e.g., see Ziemian (2010) and Owen 

et al. (1970).  

 

For horizontally curved girders, AASHTO requires an increase in the required I to account for 

the tendency of the web to bow and the tendency of the longitudinal stiffeners to bend laterally. 

This is accomplished via the parameter , given by  
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 = Z/6 + 1 (5.3.10-9a) 

 (AASHTO 6.10.11.3.3-3) 

 

for cases where the longitudinal stiffener is on the side of the web away from the center of 

curvature, and 

 

 = Z/12 + 1 (5.3.10-9b) 

 (AASHTO 6.10.11.3.3-4) 

 

for cases where the longitudinal stiffener is on the side of the web toward the center of curvature, 

where 
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 (AASHTO 6.10.11.3.3-5) 

 

is referred to as the curvature parameter. This parameter is limited to a maximum value of 10. 

When a longitudinal stiffener is placed on the side of the web away from the center of curvature, 

the eccentricity of the stiffener with respect to the web plate gives a bending effect that is 

additive with the effect of the horizontal curvature. Conversely, when the longitudinal stiffener is 

placed on the side of the web toward the center of curvature, the eccentricity of the stiffener 

gives a bending effect that counteracts the effect of the horizontal curvature.  

 

Equations (9) are a simplification of the Hanshin (1988) provisions for longitudinal stiffeners 

developed by Hall et al. (1999). The reader is referred to Nakai and Yoo (1988) for a summary of 

the Hanshin (1988) equations. A comparison of the AASHTO (2014) and Hanshin (1988) 

requirements gives the following results: 

 

 For do/D = 0.5, Eqs. (8) through (10) give a net I requirement ranging from about 0.3 to 

1.0 of that from the Hanshin provisions.  

 

 For do/D = 1.0, the AASHTO equations give a net requirement ranging from about 1.0 to 

2.0 times that from the Hanshin provisions.  

 

 For do/D = 1.5, Eqs. (8) through (10) give a net requirement ranging from about 1.0 to 3.0 

times that of the Hanshin provisions.  

 

The Hanshin provisions are based on preventing nominal yielding of the longitudinal stiffener 

and a portion of the web acting together as a beam-column. These provisions assume that 

longitudinal stiffeners are continuous across the transverse stiffener locations; hence, it is 

imperative that the detailing of the longitudinal stiffeners is consistent with this assumption. The 

reason for the more liberal nature of the AASHTO equations for small do/D stems predominantly 

from the fact that the Hanshin provisions require a larger I for straight I-girders with small do/D.  
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The behavior of stiffened plate assemblies is one of the areas of greatest complexity in the 

analysis and design of steel structures. The AASHTO (2014) Article 6.10.11.3 provisions for 

longitudinal stiffeners are a basic set of criteria for proper proportioning of longitudinal stiffeners 

in the webs of I-girders subjected solely to flexure. These provisions are not intended for 

members that are subjected to combined flexure and axial compression. The reader is referred to 

Ziemian (2010) for discussion of the broader problem of combined flexure and axial 

compression in members with longitudinally-stiffened webs.  

 

5.3.10.4 Bearing stiffeners 

 

AASHTO (2014) Article 6.10.11.2 addresses the design of bearing stiffeners. AASHTO Article 

6.10.11.2.1 requires full-depth bearing stiffeners on built-up sections at all bearing locations. 

This is consistent with the AISC (2010) provisions for unframed ends of beams and girders, and 

helps ensure adequate member torsional restraint at support locations. At bearing locations on 

rolled shapes and at other locations on built-up sections or rolled shapes where the concentrated 

loads are not transmitted through a deck or deck system, either bearing stiffeners must be 

provided or the web must satisfy the provisions of Article D6.5 (discussed below).  

 

Bearing stiffeners are designed using the AASHTO Article 6.9.2.1 column strength equations 

and assuming an effective length equal to 0.75D. Also, bearing stiffeners are required to satisfy 

the same limit as Eq. (5.3.10-6) to ensure against local buckling, the areas at the ends of the 

stiffeners (where the stiffeners are clipped to clear the web-to-flange fillet weld) must be 

sufficient to accept the bearing loads, and the connection of the stiffeners to the web must be 

sufficient to transmit the full bearing force to the web. AASHTO Article 6.10.11.2.1 requires 

plates or angles bolted or welded on both sides of the web, the intent being that the bearing 

stiffeners should be symmetric about the plane of the web.  

 

With the exception of the restrictions described below, a strip of the web extending not more 

than 9(Fyw/Fys) tw < 9 tw on each side of the stiffener elements may be included as part of the 

effective column area. If multiple stiffener pairs are used, the effective column section may 

include the web area extending up to 9(Fyw/Fys) tw < 9tw on each side of the outer projecting 

elements of the web. If the stiffeners are bolted to the web or if Fyw is less than 70 % of the 

specified minimum yield strength of the higher strength flange at interior supports of continuous-

span members, only the stiffener elements may be included in the effective column cross-section. 

The first restriction guards against the loss of compatibility between the web and the stiffeners 

due to slip within the bolted connection.  The second restriction guards against the loss of 

effectiveness of a hybrid web due to early yielding caused by longitudinal flexural stresses.  

 

5.3.10.5 Web yielding and web crippling 

 

Webs of built-up sections and rolled shapes subjected to concentrated loads at locations that do 

not have bearing stiffeners, and where the loads are not transmitted through a deck or deck 

system, must be designed to prevent transverse web yielding or web crippling at the concentrated 

loads. If the loads are transmitted through a deck or deck system, they are assumed to be 

adequately distributed to the web such that these failure modes do not occur. AASHTO (2014) 

Article D6.5 specifies the same web yielding and web crippling limit state equations as in AISC 
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(2010) to guard against these secondary failure modes. The web yielding and web crippling limit 

states can be important in some cases during construction, for example during incremental 

launching over supports, where temporary concentrated loads may be applied to the members at 

locations that do not have bearing stiffeners.  

 

5.4 Box-Section Flexural Members 

 

5.4.1  Introduction 

 

The design of box-girder bridges is generally more involved than the design of I-girder bridges. 

AASHTO (2014) Articles 6.7.4.3, 6.7.5.3 and 6.11 address various considerations specific to 

box-girder bridge design. Coletti et al. (2006 and 2005) provide useful summaries of the broad 

analysis and design considerations for tub girder bridges, which as noted in Section 2.3 of this 

module are the predominant type of box-girder construction in the United States. Box-girder 

bridges require a number of unique considerations tied to the design of the individual girder 

elements. Also, they contain a number of components beyond the box girders themselves, 

components that are essential to the behavior of the girders and the corresponding overall 

structural system. These include:  

 

 Diaphragms inside the individual box girders at points of support, to transmit the girder 

vertical reactions and torques to the support bearings, which generally are not located 

directly under the girder webs.  

 

 Intermediate cross-frames inside the individual boxes at certain intervals along their span 

to maintain the shape of the cross-section, and in tub girders, to help brace the narrow top 

flanges prior to placement of the deck.  

 

 External diaphragms between the box girders at supports to transmit the torsional 

reactions across the entire bridge width between the inside and outside bearings, and to 

restrain individual girder torsional rotations at the bearing lines (such rotations tend to 

impact the girder torsional rotations throughout the span length). Also, at end bearing 

lines, these diaphragms provide support for an expansion joint.  

 

 For tub girders, lateral bracing inside the individual boxes near the top flanges to make 

the girders act as a closed section prior to composite action of the slab. After composite 

slab action is achieved, the slab itself acts predominantly as the top flange of the box, 

rendering the lateral bracing redundant for subsequent loading. Nevertheless, the top 

lateral bracing system still can be an important element during future redecking. 

 

In spite of the unique attributes of box girders and box-girder bridges, many of the requirements 

for their design can be taken directly from the requirements for I-girder bridges. For instance, the 

general requirements for analysis of the composite structure and for consideration of slab 

reinforcing in negative bending regions, hybrid webs, variable web depth, lateral bending 

stresses in the top flanges of tub girders during construction, net section fracture at cross-sections 

containing holes in a tension flange, and web bend buckling are largely the same as the I-girder 
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requirements. As such, Article 6.11 refers back to Article 6.10 in numerous places rather than 

duplicate the I-girder provisions.  

 

AASHTO (2014) specifies several broad restrictions intended to limit its scope to the most 

common types of box-girder bridges: 

 

 Only single-cell box girders are addressed. Multiple-cell box girders require additional 

considerations.  

 

 Only moderate span lengths less than or equal to 350 ft are considered. Article C6.11.1 

states that the AASHTO provisions may be applied to larger spans “based on a thorough 

evaluation of the application of the bridge under consideration consistent with basic 

structural fundamentals.” This article also references the proposed Wolchuk and 

Mayrbaurl (1980) straight box-girder specification for information regarding the design 

of long-span steel box-girder bridges.  

 

 Only box-girder bridges that have a composite concrete deck throughout their length in 

their final constructed configuration are addressed. Articles 2.5.2.6, 4.6.2.6.4, 6.14.3 and 

9.8.3 address the design of orthotropic steel decks and orthotropic deck superstructures in 

general. However, AASHTO (2014) does not address the design of the other components 

of box girders in combination with the use of an orthotropic deck. Orthotropic deck box-

girder bridges are typically longer than the above moderate length definition.  

 

 Only composite top flanges are addressed. The behavior and design of composite bottom 

flanges is not considered.  

 

Section 5.4 of this module provides an overview of the behavior of box-girder bridges and the 

corresponding AASHTO (2014) box-girder bridge design provisions. Section 5.4.2 first focuses 

on several overriding system behavioral considerations. AASHTO (2014) categorizes box-girder 

bridges into two main groups, one for which various analysis and design simplifications are 

allowed and a second for which more detailed analysis and design procedures are necessary. 

Section 5.4.2 summarizes the restrictions applied to bridges classified in the first of these groups 

as well as the specific simplified analysis and design procedures allowed for these types of 

bridges. Section 5.4.2 then summarizes the more detailed procedures required for bridges not 

satisfying the restrictions listed in Section 5.4.2. Sections 5.4.3 and 5.4.4 then outline additional 

general AASHTO (2014) requirements applicable to all types of box-girder bridges as well as 

requirements for several specific box-girder bridge types respectively. The remaining sections of 

Section 5.4 focus on the strength behavior and design of the box girders themselves. The 

discussions in these sections largely parallel those in the previous Sections 5.3.2 through 5.3.9 on 

I-section flexural members. In places where the I-girder provisions are applicable, Sections 5.4.5 

through 5.4.14 refer back to the previous discussions. Section 5.4.15 closes the discussion of 

box-girder bridges by highlighting and explaining a number of key differences between the 

AASHTO (2014) box-girder provisions and previous proposed Wolchuk and Mayrbaurl (1980) 

specifications for straight long-span steel box-girder bridges.  
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Prior to discussing the behavior and design of box girders in detail, it is useful to establish the 

following definitions, adapted from AASHTO Article 6.2:  

 

Tub section – An open-top steel girder composed of a bottom flange plate, two inclined or 

vertical web plates, and an independent top flange attached to the top of each web. The 

Specification requires that the top flanges of straight tub girders must be connected with either a 

partial- or a full-length lateral bracing system, with due consideration of the lateral stability of 

the top flanges and the overall stability of the members. A full-length lateral bracing system is 

required for curved tub girders.  

 

Closed-box section – A member having a closed cross-section composed of two vertical or 

inclined webs and top and bottom stiffened or unstiffened steel plate flanges. In the context of 

Article 6.11, the top flange of a closed-box section is always composite with a concrete deck in 

the final constructed configuration.  

 

Box flange – A flange that is connected to two webs. The flange may be a flat unstiffened plate, a 

stiffened plate or a top flat plate with reinforced concrete attached with shear connectors. The 

terms “unstiffened” and “stiffened” here have a different meaning than these terms in the prior 

discussions of plate local buckling in Section 5.2.4 of this module and in AASHTO Article 

6.9.4.2. In this section, “stiffened” means that longitudinal and/or transverse stiffeners are 

attached to the plate, whereas “unstiffened” means that the plate does not have any longitudinal 

or transverse stiffeners.  

 

Diaphragm – A vertically oriented solid-web transverse member connecting adjacent 

longitudinal flexural members, or placed inside of a closed-box or tub section to transfer and 

distribute vertical and lateral loads, to provide stability to the compression flanges, and to limit 

the cross-section distortion to acceptable levels.  

 

Cross-frame – A transverse truss assembly connecting adjacent longitudinal flexural members, 

or placed inside of a closed-box or tub section to transfer and distribute vertical and lateral loads, 

to provide stability to the compression flanges, and/or to limit the cross-section distortion to 

acceptable levels.  

 

5.4.2 Categorization of Box-Girder Bridges in AASHTO (2014)  

 

5.4.2.1 Straight multiple-box-girder bridges satisfying the restrictions in Article 6.11.2.3 

and having fully effective flanges 

 

Article 6.11.2.3 specifies the following restrictions that are first stated as being necessary for the 

applicability of line girder analysis using the live-load lateral distribution factor equation of 

Article 4.6.2.2.2 for multiple steel box girders with a concrete deck. However these restrictions, 

combined with additional limits, also form the basis for a number of other analysis and design 

simplifications. The additional limits and the corresponding analysis-design simplifications are 

discussed subsequently. The specific requirements for use of the above basic live-load 

distribution factor are: 
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 The bridge cross-section must consist of two or more single-cell box sections. 

 

 The bridge should not have any horizontally curved segments (the influence of horizontal 

curvature generally extends beyond the horizontally curved segments and into other 

straight spans of the structure).  

 

 The bridge shall not have any support skew. 

 

 At midspans, 0.8w < a < 1.2w, where w is the center-to-center distance between the top 

flanges of the box girders and a is the center-to-center distance between the flanges of 

adjacent box sections (see Figure 21).  

 

 For nonparallel box girders, 0.65w < a < 1.35w must be satisfied at the supports.  

 

 The value of w must be the same for all of the girders. 

 

 The inclination of the webs with respect to a plane normal to the bottom flange shall not 

exceed 1 to 4. 

 

 The width of concrete deck cantilever overhangs, wo, including curbs and parapets, shall 

satisfy wo < min (0.6 aavg, 6 ft), where aavg is the average a dimension along the span 

length. 

 

These restrictions are based on the range of bridge characteristics considered in the original 

development of the box-girder lateral load distribution factors by Johnston and Mattock (1967).  

 

In addition to the above restrictions, AASHTO Article 6.11.1.1 specifies that a box flange may 

be considered to be fully effective in resisting flexure (i.e., no reduction in resistance due to 

shear lag effects) when bf < L/5, where L is taken as the span length for simple spans and the 

distance between points of permanent load contraflexure or between a simple support and a point 

of permanent load contraflexure for continuous spans. For negative moment regions in 

continuous-span box girders, L is taken as the distance between the points of permanent load 

contraflexure on each side of the support.  

 

The above simplified rule comes from studies of simple-span bridges with L/bf ranging from 5.65 

to 35.3 (Goldberg and Leve 1957). The effective flange width ranged from 0.89 for the bridge 

with the smallest L/bf to 0.99 for the bridge with the largest L/bf in these studies. Dowling and 

Harding (1992) also indicate that box flanges may be considered as fully effective except in 

cases with particularly large aspect ratios (i.e., large bf/L), or cases with particularly slender edge 

panels or stiffeners. AASHTO 4.6.2.6.4 gives different effective width rules developed by 

Moffatt and Dowling (1975 and 1976) for orthotropic steel decks. These effective width 

definitions, which are applicable to stiffened or unstiffened box flanges, are discussed 

subsequently in Article 5.4.15.  

 

Various AASHTO (2014) articles specify analysis and design simplifications for box-girder 

bridges that: satisfy all of the above requirements for (1) use of the simple live-load distribution 
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factor equation and (2) consideration of the box flange or flanges as fully effective. These 

analysis and design simplifications are as follows: 

 

 Stresses due to distortion of the box cross-section (when it is subjected to torsion) may be 

neglected (Article C6.11.2.3). These are the shear, warping and plate bending stresses 

illustrated previously in Figure 20. AASHTO (2014) allows these stresses to be neglected 

both for consideration of strength as well as for consideration of fatigue (see Article 

6.11.5).  

 

 If several other requirements are also satisfied (discussed subsequently), sections in 

positive flexure may be designed as compact sections using the provisions of Article 

6.11.7.1 (this is specified in Article 6.11.6.2.2). 

 

 Shear stresses due to St. Venant torsion may be neglected (Article C6.11.2.3). 

 

 The shear connectors between the slab and the steel girders need be designed only for 

flexural shear (Article 6.11.10).  

 

 The Engineer may consider reducing the number of intermediate internal cross-frames to 

a minimum of: (1) points of maximum moment in the span, (2) points adjacent to field 

splices, and (3) points required to avoid excessive stresses during transportation and 

lifting of shipping pieces (Article 6.7.4.3). Article C6.7.4.3 also indicates that internal 

bracing members inserted for transportation, lifting and/or construction may be handled 

as temporary members. Nevertheless, Article C6.7.4.3 also states that additional cross-

frame members may be required for construction. This statement either requires 

Engineers to use their judgment about potential construction conditions, such as eccentric 

loading causing torsion, and/or to perform analyses of potential construction conditions to 

check the St. Venant shear and distortional stresses and deformations. Furthermore, 

Article C6.7.4.3 also states that in tub sections with inclined webs, additional 

intermediate cross-frames, diaphragms or struts may be required to reduce the lateral 

bending in the discretely-braced top flanges during construction. Lastly, Article 

C6.11.1.3 states that at least two intermediate internal cross-frames or diaphragms are 

necessary to reduce the magnitude of the secondary stresses due to distortion of the cross-

section at the web-to-flange welds to an extent (i.e., by more than 80 %) such that fillet 

welds on both sides of the web designed according to Article 6.13.3.4 may be assumed to 

be adequate. In short, although it is possible to reduce the number of internal cross-

frames in bridges satisfying the above restrictions, there are a number of additional 

considerations that must be addressed.  

 

5.4.2.2  Box-girder bridges not satisfying one or more of the above requirements 

 

AASHTO (2014) specifies the following more detailed analysis and design procedures for box-

girder bridges not satisfying one or more of the above requirements: 

 

 The bridge should be analyzed using a refined analysis, i.e., an analysis that captures the 

three-dimensional responses of the structure (Article C6.11.2.3).  
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 For wide bridges in which the box flanges are not considered fully effective, the box-

flange width is to be taken as L/5 in calculating the major-axis bending stresses (Article 

6.11.1.1). However, the full box flange width is to be used in the applicable resistance 

equations.  

 

 Internal diaphragms or cross-frames shall be provided to control the cross-section 

distortion, with the spacing not to exceed 40 ft (Article 6.7.4.3). Article C6.7.4.3 

elaborates that internal diaphragms and cross-frames: (1) “must” be spaced to limit the 

plate bending stresses due to distortion (see Figure 20) to 20 ksi at the strength limit state 

(this is stated as a requirement in Article 6.11.1.1), and (2) should be spaced to limit the 

longitudinal warping stresses (see Figure 20) to 10 % of the normal stresses due to major-

axis bending at the strength limit state (Article 6.11.1.1 states that these stresses may then 

be ignored at the strength limit state). These plate bending stresses may be estimated 

using a beam-on-elastic-foundation (BEF) analogy developed by Wright and Abdel-

Samad (1968). In this method, the internal cross-braces are analogous to intermediate 

supports and the resistance to distortion provided by the box cross-section is analogous to 

a continuous elastic foundation. Sample calculations using this method are presented by 

Heins and Hall (1981) and in AASHTO (2003). The longitudinal warping stresses due to 

cross-section distortion also can be determined using the BEF analogy. Given the 

provision of adequate internal diaphragms and cross-frames using these rules, AASHTO 

(2014) neglects the influence of the plate bending and warping stresses due to cross-

section distortion for checking of strength limit states.  

 

As noted subsequently in Section 5.4.3 of this module, Article C6.7.4.3 also states that in 

tub sections with inclined webs, additional intermediate cross-frames, diaphragms or 

struts may be required to reduce the flange lateral bending in discretely-braced top 

flanges. Furthermore, the following statement from Article C6.11.1.3 still applies: at least 

two intermediate internal cross-frames or diaphragms are necessary to reduce the 

magnitude of the secondary stresses due to distortion of the cross-section at the web-to-

flange welds to an extent (i.e., by more than 80 %) such that fillet welds on both sides of 

the web designed according to Article 6.13.3.4 may be assumed to be adequate.  

 

 In designing the webs for shear, the web shear force shall be taken as the sum of the 

forces due to flexure and due to the St. Venant torsional shears (Article 6.11.9). 

 

 The top flange shear connectors shall be designed for the sum of the shear forces due to 

flexure and due to the St. Venant torsion (Article 6.11.10).  

 

 Web splices shall be designed for the sum of the above shears (Article 6.13.6.1.4b). 

 

 The longitudinal warping stresses due to cross-section distortion shall be considered 

when checking bolted flange splices for slip and for fatigue (Article 6.13.6.1.4c).  

 

 The need for a bottom transverse member within internal cross-frames shall be 

considered (Article 6.7.4.3).  Article 6.7.4.3 indicates that this member may be needed to 
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limit the plate bending stress range for fatigue in the bottom box flange at the termination 

of fillet welds connecting cross-frame connection plates to the flange. In addition, Article 

6.11.11.2 indicates that for rare cases where a box flange is exceptionally wide and more 

than two longitudinal stiffeners may be required, transverse flange stiffeners should be 

considered to reduce the required size of the longitudinal stiffeners. AASHTO does not 

suggest any other conditions requiring a transverse member or transverse stiffener 

attached to a box flange.  

 

Where provided, the transverse member shall be attached to the box flange unless 

longitudinal flange stiffeners are used, in which case the transverse member shall be 

attached to the longitudinal stiffeners by bolting. Article 6.7.4.3 also states that the cross-

sectional area and stiffness (implying flexural stiffness) of the top and bottom cross-

frame members shall be greater than or equal to that of the diagonal members. The intent 

of these provisions is to ensure that the shape of the cross-section is maintained, i.e., to 

limit the transverse bending of the bottom flange due to cross-section distortion at the 

internal cross-frame locations.  

 

5.4.3 Other General Requirements Applicable to All Types of Box-Girder Bridges 

 

In addition to the above rules and procedures, which differ depending on whether the bridge 

satisfies the restrictions for simplified analysis and design listed in Section 5.4.2 of this module 

or not, AASHTO (2014) specifies other general requirements that apply to all types of box-girder 

bridges. These requirements are summarized in the following subsections.  

 

5.4.3.1  Diaphragm requirements at supports (Article 6.7.4.3) 

 

Article 6.7.4.3 specifies the following diaphragm requirements at the bridge supports:  

 

 Internal diaphragms or cross-frames shall be provided at each support to resist transverse 

rotation, displacement and cross-section distortion and shall be designed to transmit the 

torsional moments and lateral forces from the box to the bearings. 

 

 External cross-frames or diaphragms shall be used between the boxes at end supports. 

 

 Where box or tub girders are supported on only one bearing, the need for external cross-

frames between girders at interior supports should be evaluated to ensure torsional 

stability (these components are also key in controlling the torsional rotations of the 

individual girders, particularly during construction). 

 

 Diaphragms that are provided for continuity or to resist torsion shall be connected to the 

webs and flanges of the box section.  (It should be noted that recent studies by Zhou 

(2006) and Helwig et al. (2007) indicate that it is not essential to connect the diaphragms 

to the girder flanges when the length to depth ratio of the diaphragm is less than five; fit-

up of external diaphragms with the girders during construction is facilitated by not 

providing a connection to the flanges,)  
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 The effect of access holes on the stresses in diaphragms should be investigated to 

determine if reinforcement is required 

 

5.4.3.2 Bearing requirements (Article 6.11.1.2) 

 

Article 6.11.1.2 specifies the following requirements at bearings:  

 

 Single or double bearings may be used. Double bearings provide a restoring couple on 

each box, whereas single bearings require bearings on other girders to provide the 

torsional reactions required for equilibrium.  

 

 Single bearings shall be aligned with the shear center of the box. 

 

Furthermore, Article 6.11.11.1 states that stiffeners are to be designed using the I-girder 

provisions of Article 6.10.11.2 plus the following additional requirements: 

 

 The bearing stiffeners should be attached to the diaphragms and not to the inclined webs, 

so that the stiffeners are perpendicular to the sole plate.  

 

 At expansion bearings, the bearing stiffeners and diaphragms should be designed for 

eccentricity due to the thermal movement. This may be handled by designing the bearing 

stiffener assembly as a beam-column.  

 

5.4.3.3  Top lateral bracing requirements in tub girders (Article 6.7.5.3) 

 

Article 6.7.5.3 addresses the top lateral bracing system requirements for tub girders. This article 

requires a full-length lateral bracing system for curved boxes. Its commentary suggests that a 

full-length system should be provided for all straight boxes with spans greater than about 150 ft, 

and for general cases in which the torques acting on the steel section are deemed particularly 

significant (e.g., tubs in which the deck is unsymmetrically placed, and tub girders with skewed 

supports). Article 6.7.5.3 indicates that the objective is to ensure that the overall stability of the 

girders is provided and the deformations of the tub sections are adequately controlled during 

erection and placement of the concrete deck. For the other very limited situations, the Engineer is 

allowed to consider providing a partial length lateral bracing system. However, if the bracing 

system is partial length, the local and global stability of the top flanges and the tub-girder 

members must be investigated for the Engineer’s assumed construction sequence. Also, Article 

C6.7.5.3 states that for spans less than about 150 ft, at least one panel of horizontal lateral 

bracing should be provided on each side of a lifting point. Furthermore, this article indicates that 

cross-section distortion and additional top-flange lateral bending stresses due to warping of the 

cross-section may need to be considered when a tub with a partial-length bracing system is 

subjected to a net torque. 

 

Article C6.7.5.3 suggests the following equation as a guideline to ensure that a reasonable 

minimum area is provided for the diagonal bracing members: 
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Ad > 0.03w (5.4.3-1) 

 (AASHTO C6.7.5.3-1) 

Where 

 

Ad = the minimum required cross-sectional area of one diagonal, expressed in inches
2
. and 

 

w = the center-to-center distance between the top flanges, expressed in inches.  

 

This equation was recommended by Heins (1978) based on studies of straight and curved steel 

composite box-girder bridges with spans between 50 and 250 ft. Tub sections with vertical webs 

and ratios of the section width-to-depth between 0.5 and 2.0, and an X-type top lateral bracing 

system with the diagonals placed at an angle of 45
o
 relative to the longitudinal axis of the flanges 

were assumed in these studies. Heins found that an equivalent solid plate thickness for the top 

lateral bracing system of  

 

teq = 0.05 in = 22
cos sindAE

G w
   (5.4.3-2) 

 

was sufficient to limit the section warping stresses to less than 10 % of the major-axis bending 

stresses in all cases, where  is the angle of the X-bracing diagonals with respect to the plane of 

the box cross-section. Eq. (2) is obtained from Kollbrunner and Basler (1969) by assuming rigid 

truss chords (i.e., the tub girder top flanges) relative to the diagonal members. By substituting  

= 45
o
 into this equation and solving for Ad, one obtains Eq. (1).  

 

AASHTO (2014) Article C6.7.5.3 acknowledges that Eq. (1) is not necessarily applicable to 

general bracing configurations and cross-section geometries. However, it suggests that this 

equation may be used as a guide to ensure that a reasonable minimum area is provided for the 

bracing members. If the underlying teq = 0.05 in. were generally applicable, the equations given 

by Kollbrunner and Basler (1969) could be used to determine the necessary bracing member 

areas for various bracing configurations. It is suggested that the requirement of teq = 0.05 in. 

should be revisited to ascertain its applicability for a complete range of modern tub girder 

designs, including spans up to 350 ft. In the meantime, teq = 0.05 in. may be used as an 

implementation of the Article C6.7.5.3 suggestion to ensure that a reasonable minimum area is 

provided for top flange bracing members.  

 

Lastly, Article 6.7.5.3 requires that the top lateral bracing system shall be designed for the 

combined forces due to the shear flow in the pseudo-box section plus the force associated with 

the flexure of the tub due to the factored loads before the concrete deck has hardened or is made 

composite.  

 

5.4.4 Additional Requirements for Specific Box-Girder Bridge Types 

 

In addition to the above general requirements, specific types of box girders are addressed by 

different Articles of the AASHTO (2014) provisions. These requirements are summarized below. 
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5.4.4.1  Horizontally curved boxes (multiple or single) 

Article C6.11.1 emphasizes that for horizontally curved tub girders, top flange lateral bending 

due to curvature must be considered during construction. Also, it points out that the effects of the 

St. Venant torsional shear must always be considered at all limit states and during construction in 

horizontally curved boxes.  

 

5.4.4.2 Single boxes 

 

The following specific requirements pertain to single box section bridges: 

 

 Article 6.11.1 states that single box sections shall be positioned in a central location with 

respect to the cross-section, and that the center of gravity of the dead load shall be as 

close to the shear center of the box as possible. This requirement is intended to minimize 

the torsion that must be resisted by the box.  

 

 Article C6.11.1 indicates that items such as sound barriers on one side of the bridge may 

be critical on single-box sections.  

 

  should be positioned to evaluate both the maximum flexure and the maximum torsion in 

single-box-girder bridges, since the loads causing the critical torsion may be different 

than those causing the critical flexure.  

 

 Article C6.11.1.2 emphasizes that the bearing arrangement dictates how torsion is 

resisted at supports and is especially critical for single box sections.  

 

 Article 6.11.5 states that for single box sections, box flanges in tension shall be 

considered fracture critical unless analysis shows that the section can support the full 

dead load and an appropriate portion of the live load after sustaining a hypothetical 

complete fracture of the flange and the webs at any point.  

 

5.4.4.3  Closed boxes 

 

The following specific requirements pertain to closed-box section bridges: 

 

 Article 6.11.3.2 states that for loads applied to a composite box flange before the concrete 

has hardened or is made composite, the flange shall be designed as a noncomposite box 

flange. 

 

 Article 6.11.3.2 states that the maximum vertical deflection of a noncomposite box flange 

relative to its edges due to the unfactored permanent loads plus the unfactored 

construction loads is limited to    bf /360. 

 

 Article 6.11.3.2 specifies that the through thickness bending stress in the noncomposite 

box flange due to the factored permanent loads plus the factored construction loads shall 

not exceed 20 ksi. The box flange may be assumed to be simply supported at the webs in 

making this calculation and the above calculations. 
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5.4.5 Proportioning Limits 

 

AASHTO (2014) Article 6.11.2 defines the following proportioning limits unique to box girders: 

 

 A 1 to 4 limit on the inclination of the web plates is recommended relative to an axis 

normal to the bottom flange. Larger web inclination is allowed, but the effects of changes 

in the St. Venant and/or flexural web shears on lateral bending of the top flanges will be 

larger during construction (see the discussion in Section 2.3 of this module). Also, highly 

inclined webs are generally less efficient in transmitting shear. However, the width of the 

bottom flange may be reduced by using a larger web inclination.  

 

 The webs shall be attached to the mid-width of the top flanges. Attachment of the webs 

other than at the top flange mid-widths would cause additional flange lateral bending that 

would require special investigation.  

 

 Extension of the box flanges at least one inch beyond the outside of each web is 

recommended to facilitate welding of the webs to the flange.  

 

Otherwise, the web and top flange proportioning requirements for box girders are the same as 

those for I-girders (discussed previously in Section 5.3.2 of this module), with the exception that 

Eq. (5.3.2-6) is not applicable. Article 6.11.2 specifies that the inclined distances along the web 

are to be used in checking the web proportioning limits as well as all other pertinent design 

requirements.  

 

Although it is discussed in Article 6.11.3.2 on Constructability, AASHTO (2014) provides one 

additional limit that deserves mention with the above proportioning limits. This article suggests  

 

bf > L/85  (5.4.5-1) 

 

for the top flanges of tub girders, in cases where a full-length lateral bracing system is not 

provided within a tub section, with L taken as the larger of the distances between panels of lateral 

bracing, or between a panel of lateral bracing and the end of the piece. This limit is similar in 

intent to Eq. (5.3.2-7) discussed previously for I-section flexural members.  

 

5.4.6  Compact Composite Sections in Positive Flexure 

 

The Article 6.11.6.2.2 requirements for composite sections in positive flexure to be considered as 

compact are the same as in Article 6.10.6.2.3 for I-sections (see Section 5.3.3 of this module), 

except that the bridge must also satisfy the requirements of Article 6.11.2.3 for use of the 

simplified live load distribution factor (see Section 5.4.2(A)) and the box flange must be fully 

effective based on the provisions of Article 6.11.1.1 (also discussed in Section 5.4.2).  

 

The corresponding Article 6.11.7.1 resistance calculations and ductility requirements are the 

same as for compact composite I-sections in positive flexure (see Section 5.3.3) except that, for 

continuous spans, the nominal flexural resistance is always subject to the limitation of Eq. (3-2, 
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AASHTO 6.10.7.1.2-3). Either Eq. (3-2) or Eq. (5.3.3-3, AASHTO 6.10.7.1.2-2) will usually 

govern, thus limiting the nominal flexural resistance to a value less than the full plastic moment 

of the cross-section but larger than the cross-section yield moment.  

 

5.4.7 Noncompact Composite Sections in Positive Flexure 

 

AASHTO Article 6.11.6.2.2 specifies that all box sections in positive bending that do not meet 

the restrictive requirements discussed above must be designed as noncompact composite 

sections. As such, the flexural resistance is always less than or equal to the cross-section yield 

moment. Similar to the procedures for noncompact composite I-sections in positive flexure, 

discussed previously in Section 5.3.4 of this module, the resistances are expressed in terms of the 

elastically computed flange stresses.  

 

For tub sections, the Article 6.11.7.2 calculation of the resistance based on the top flange stress is 

the same as that for noncompact composite I-sections in positive flexure (see Section 5.3.4). 

However, for closed-box sections, the nominal resistance of the top (compression) flange is 

taken as  

 

Fnc = RbRhFyc  (5.4.7-1) 

 (AASHTO 6.11.7.2.2-2) 

 

Where 
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 (AASHTO 6.11.7.2.2-3) 

 

fv = the St. Venant torsional shear stress in the flange due to the factored loads at the 

section under consideration, calculated as 

 

2
v

o fc

T
f

A t
  (5.4.7-3) 

 (AASHTO 6.11.7.2.2-4) 

 

Rb = the web load-shedding strength reduction factor specified in Article 6.10.1.10.2, with 

the top flange area taken as one-half of the effective area of the box flange, including 

the contribution of the concrete deck, and  

 

Rh = the hybrid web strength reduction factor specified in Article 6.10.1.10.1, with the 

bottom  flange area taken as one-half of the effective area of the box flange. (Note 

that yielding will practically always occur first in the bottom flange of these section 

types.)  
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Also, in Eq. (5.4.7-3),  

 

T = the torque due to the factored loads and 

   

Ao = the enclosed area within the box section. 

   

Equation (2) reduces the effective yield resistance of the top flange accounting for the influence 

of the St. Venant torsional shear stress via the von Mises yield criterion. The participation of the 

concrete deck in transferring the shear stresses is neglected by using just the thickness of the 

steel top flange for tfc in Eq. (3). Also, the flange shear stress due to flexure is considered 

negligible and is not included in Eq. (2).  

 

The term  appears in many places in the different box flange resistance equations presented in 

this Section. In all cases, this term gives a reduction in the effective yield strength under 

longitudinal tension or compression due to the St. Venant torsional shear stress.  

 

Similar to the above, the nominal resistance of the bottom tension flange is taken as 

 

Fnt = RhFyt  (5.4.7-4) 

 (AASHTO 6.11.7.2.2-5) 

 

Article 6.11.1.1 requires that box flanges also must generally satisfy  

 

0.75
3

yf

v v

F
f   (5.4.7-5) 

 (AASHTO 6.11.1.1-1) 

 

This magnitude of torsional shear stress is rarely, if ever, encountered in practical box girder 

designs. However, this limit ensures that  (Eq. (2)) will never be smaller than 0.66.  

 

The Article 6.11 provisions imply that box flange shear stresses associated with flexure do not 

need to be considered in any situation. However, for cases with tf only slightly larger than tw, 

consideration of these shear stresses is prudent. The elastic shear flow f = VQ/I in a box flange at 

the web-flange junctures is essentially the same as the corresponding elastic shear flow in the 

webs at these locations.  

 

As a refinement on Eq. (3), for composite box flanges, the St. Venant torsional shear in the steel 

plate may be determined by multiplying the shear on the top of the composite box section by the 

ratio of the transformed concrete deck to the total thickness of the top flange plus the 

transformed deck. The St. Venant torsional shear in the concrete deck may be determined 

similarly. Adequate transverse reinforcing should be provided in the concrete deck to resist the 

shear forces due to St. Venant torsion.  

 

The requirements for checking the slab stresses in shored construction are the same as those for 

I-section members 
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5.4.8 Noncomposite Sections 

 

AASHTO (2014) Article 6.11 assumes that box-girder bridges always have a composite concrete 

deck throughout their length in their final constructed condition. Design using a noncomposite 

orthotropic steel plate deck is not explicitly addressed. Therefore, the resistance of box sections 

under noncomposite loadings is addressed only within Article 6.11.3, Constructability. This 

article requires the checking of noncomposite box flanges in tension as well as continuously-

braced (top) box flanges in tension or compression using Eq. (5.4.7-4) but with the yield strength 

of the flange under consideration substituted for Fyt. Noncomposite box flanges in compression 

are checked under the factored construction loads for  

 

fbu < fFnc  (5.4.8-1) 

 (AASHTO 6.11.3.2-1) 

 

where  

 

fbu = the longitudinal flange stress due to the factored loads at the section under 

consideration, calculated without consideration of cross-section warping, and  

 

Fnc = the nominal compressive resistance, defined in the Article 6.11.8.2 provisions for 

sections in negative flexure (discussed in the next section of the module). 

 

The top flanges of tub-girders are checked in their noncomposite condition under construction 

loadings using the I-section member provisions of Articles 6.10.3.2.1 through 6.10.3.2.3. As 

such, the design of these elements in tub and I-girders is handled in the same unified fashion 

across all of the AASHTO (2014) provisions. The top flange unbraced length is taken as the 

distance between the panel points of the top lateral bracing system. The flange strength check 

under construction loadings is given by Eq. (5.3.7-1), which includes the influence of flange 

lateral bending due to any source. The following actions contribute generally to the lateral 

bending of the top flanges in tub girders in their noncomposite condition prior to the concrete 

slab becoming composite: 

 

 forces from overall action of top lateral bracing system in resisting major-axis flexure and 

torsion, 

 

 changes in shear along the length of the girder, causing a horizontal distributed load on 

the top flanges of the tub, 

 

 eccentric loads from cantilever overhangs acting on forming brackets, 

 

 horizontal curvature, and  

 

 typically to a minor extent, wind. 
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The top flanges of tub girders are assumed to be continuously braced after the concrete slab has 

hardened or is made composite. As such, the top flange lateral bending effects are negligible and 

are no longer considered once the flanges have reached this state.  

 

5.4.9 Composite Sections in Negative Flexure 

 

As noted in the previous section, AASHTO (2014) Article 6.11 assumes that box-girder bridges 

always have a composite concrete deck in their final constructed condition. As a result, 

resistance checks for flange lateral bending and/or member lateral torsional buckling are no 

longer a consideration once the slab has hardened or is made composite. Flange lateral bending is 

not a consideration because the top flange elements are continuously supported by the concrete 

deck. Sufficient internal cross-frames and diaphragms are required such that lateral bending 

stresses due to warping are negligible in box flanges at the strength limit states during 

construction and after the completion of the structure. Lateral torsional buckling is not a 

consideration for composite boxes because of their large torsional stiffness and lateral torsional 

buckling resistance. 

 

For the continuously braced top flanges of box girders in the final constructed condition, Articles 

6.11.8.1.2 and 6.11.8.3 specify  

 

fbu < fRhFyt  (5.4.9-1) 

 (AASHTO 6.11.8.1.2-1 and 6.11.8.3-1) 

 

for tub sections and Eq. (5.4.7-4) for closed box sections. For the bottom box flange in 

compression under negative flexure, Article 6.11.8.1.1 specifies  

 

fbu < f Fnc  (5.4.9-2) 

 (AASHTO 6.11.8.1.1-1)  

 

where Fnc is the nominal compressive resistance defined in Article 6.11.8.2. Article 6.11.8.2 is 

subdivided into two subarticles addressing the cases of unstiffened box flanges and 

longitudinally stiffened box flanges. The resistance equations for box flanges in compression are 

specified in Article 6.11.8.2.1 along with the plate buckling coefficients k and ks for uniform 

axial compression and uniform shear on unstiffened flanges respectively. Article 6.11.8.2.2 

utilizes the same resistance equations, but uses the panel width (defined below) rather than the 

total flange width in its definition of the flange slenderness. Also, this article redefines the plate 

buckling coefficients k and ks accounting for the influence of the flange stiffeners.  

 

The resistance of box flanges in compression is based on local buckling of the flange under 

combined uniform axial compression and shear. The resistance curves, illustrated in Figure 79, 

are fitted to two anchor points similar to the handling of compression flange local buckling and 

lateral torsional buckling in I-section members. For flange slenderness values  
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  (5.4.9-3) 
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the flange is taken to provide a constant maximum potential resistance, for  
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  (5.4.9-4) 

 

the flange resistance is governed by elastic local buckling, and for 
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 (5.4.9-5) 

 

the flange resistance is governed by inelastic local buckling, where  

 

b = bf  for unstiffened flanges and  

 

b = w = larger of the width between flange longitudinal stiffeners or the distance from a web to 

the nearest flange longitudinal stiffener for stiffened flanges. 

 

However, the box flange inelastic local buckling resistance is represented by a sinusoidal 

function rather than by a linear interpolation between the two anchor points as in the I-section 

member equations. The selection of a sinusoidal function for the inelastic transition curve 

originates from the straight box girder developments by Vincent (1969) and Mattock and 

Fountain (1967).  

 

The maximum potential resistance associated with Anchor Point 1 in Figure 79, 

 

Fmax = RbRhFyc (5.4.9-6) 
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Figure 79  Flange local buckling resistance for box flanges in compression. 
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is the flange full-yielding resistance, reduced by the shedding of flexural stresses from the web 

due to bend buckling (via Rb), the use of a hybrid web (via Rh) and the influence of the St. 

Venant torsional shear stresses (via , Eq. (5.4.7-2)). The abscissa of Anchor Point 1 is taken at 

0.6 of the flange slenderness f at which the elastic local buckling resistance is equal to RbFyc. 

Correspondingly, the ordinate of Anchor Point 2 is taken as RbFyr, where Fyr is the base flange 

stress corresponding to the nominal onset of yielding. This is taken as 

 

Fyr = ( - 0.3) Fyc < Fyw (5.4.9-7) 

 (similar to AASHTO 6.11.8.2.2-13) 

 

The abscissa of Anchor Point 2 is the value of f at which the flange elastic local buckling 

resistance is equal to RbFyr. The elastic local buckling resistance is expressed as  
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 (5.4.9-8) 

  

 

The term within the square brackets in Eq. (8) gives an accurate to somewhat conservative 

estimate of the influence of a uniform applied shear stress on the elastic buckling resistance of 

flat plates in uniform axial compression (Ziemian 2010). The applied St. Venant torsional shear 

stress fv is taken as the sum of the contributions from the different torques applied to the 

noncomposite and composite cross-sections.  

 

For unstiffened flanges, k is taken equal to 4.0 and ks is taken as 5.34 in Eqs. (3), (4), (5) and (8). 

These are the theoretical values for elastic buckling of an infinitely long flat plate with simply-

supported edge conditions. For the case of fv = 0, and thus  = 1, AASHTO (2014) Article 

6.11.8.2.2 gives a value of 0.57 for R1 in Eq. (3). This, combined with k = 4.0 in Eq. (3), is 

practically equivalent to the AISC (2010) compactness requirement for the compression flange 

of a rectangular box section. For Fyc = 50 ksi, the corresponding Anchor Point 1 value for b/tf is 

27.5. Also for this basic case, Article 6.11.8.2.2 gives R2 = 1.23. For Fyc = 50 ksi, the 

corresponding Anchor Point 2 value for b/tf is 59.2. 

 

For stiffened flanges, k and ks are typically smaller than the above values due to the finite rigidity 

(i.e., flexibility) of the longitudinal stiffeners. In this case, the AASHTO (2014) equations are 

formulated in terms of the longitudinal stiffener moment of inertia Is necessary to develop a 

certain value of k < 4.0. The base equation is  

 
3

s fcI wt  (5.4.9-9) 

 (AASHTO 6.11.11.2-2) 
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Where 

 

 = 0.125k
3
 for n = 1 (5.4.9-10a) 

 = 1.120k
3
 for n = 2 (5.4.9-10b) 

    

Is is taken as the moment of inertia of the longitudinal flange stiffener about an axis parallel to 

the flange located at the base of the stiffener, and n is the number of equally spaced longitudinal 

flange stiffeners.  

 

AASHTO (2014) Articles 6.11.8.2.3 and 6.11.11.2 require Is to be large enough to develop a 

value of at least k = 1.0, although a value of at least k = 2.0 is recommended. Equations (10), 

which originate from Vincent (1969), are approximate equations that give values close to 

theoretical elastic buckling solutions for infinitely long, longitudinally stiffened plates from 

Goldberg and Levy (1957). In Article 6.11.8.2.3, the above equations are solved algebraically for 

the k values corresponding to a given Is. Article C6.11.11.2 suggests that the number of 

longitudinal flange stiffeners should not exceed one for maximum economy in boxes of typical 

proportions.  

 

AASHTO (2014) Article C6.11.11.2 gives the following more general equation for , from 

Vincent (1969), applicable for n = 2, 3, 4 and 5: 

 

 = 0.07k
3
n

4
 (5.4.9-10c) 

 

For n > 2, the required moment of inertia from Eqs. (9) and (10c) is excessive. This is due to the 

fact that these equations are based on the idealization of an infinitely long plate. Therefore, for 

the rare cases where an exceptionally wide box flange is required and n may need to exceed 2, 

Article C6.11.11.2 suggests that transverse flange stiffeners be provided to reduce the required 

size of the longitudinal stiffeners to a more practical value. This Article also suggests that 

transverse flange stiffeners should be considered for n = 2 if a k value larger than about 2.5 is 

needed and it is desired to reduce the required size of the longitudinal stiffeners relative to that 

given by Eq. (9). Article C6.11.11.2 provides equations for the proportioning of the transverse 

and longitudinal stiffeners as well as the resulting value of the plate buckling coefficient k 

applicable for these exceptional cases. The longitudinal stiffeners are sized using  = 8.0 in these 

situations, which is approximately the same as the requirement to develop k = 2.0 in Eq. (10b). 

Transverse and longitudinal flange stiffeners sized by these requirements give a value of k  4.0 

when the transverse flange stiffeners are spaced at a distance less than or equal to 4w for n < 5.  

 

Furthermore, the coefficient for the elastic shear buckling of a stiffened flange is specified as  
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 (AASHTO 6.11.8.2.3-3) 
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in AASHTO (2014) Article 6.11.8.2.3. This equation, as well as the general extension of 

Vincent’s (1969) straight-box girder equations in Figure 79, and Eqs. (3) through (10) originate 

from Culver (1972).  

 

The longitudinal stiffeners act integrally with the flange in resisting flexural compression in 

stiffened box flanges. Also, AASHTO (2014) generally does not count upon any postbuckling 

resistance of box flange elements. Therefore, the area of these stiffeners generally should be 

included in calculating the moment of inertia, elastic section modulus and other properties of the 

box section. Conversely, the web longitudinal stiffeners are sized using the same philosophy as 

for I-section members (see Section 5.3.10 of this module). That is, the web longitudinal stiffeners 

are sized to maintain a line of near zero lateral deflection at their juncture with the web plate for 

load levels up to the calculated bend buckling resistance of the web. As discussed previously in 

Section 5.3.10 of this module, based on the derivation of the web longitudinal stiffener rigidity 

requirements and the design of the webs generally including their postbuckling resistance, it is 

recommended that the web longitudinal stiffeners should not be included in determining the 

member cross-section properties.  

 

Article 6.11.11.2 requires that the specified minimum yield strength of the flange longitudinal 

stiffeners shall not be less than the specified minimum yield strength of the box flange to which 

they are attached. This is similar to the previously discussed requirement of Eq. (5.3.10-5). Also, 

this article specifies that the projecting widths of the flange longitudinal stiffener elements must 

satisfy the same limit as defined by Eq. (5.3.10-6). As noted in Section 5.3.10, this limit is 

intended to prevent local buckling of the flange longitudinal stiffeners. For structural tee 

stiffeners, this limit is to be applied to one-half of the tee flange width.  

 

5.4.10 Bottom Box Flange at Interior Pier Sections 

 

Article C6.11.8.1.1 addresses the complex biaxial stress conditions in bottom box flanges at 

interior pier sections. At these locations, the bottom flange is subjected to the stresses from 

major-axis bending of the box section as well as major-axis bending of the internal diaphragm 

over the bearings. In addition the flange is subjected to shear stresses due to the internal 

diaphragm vertical shear as well as, when it is non-negligible, the St. Venant torsional shear in 

the box section. The flexural and shear stresses due to the bending of the internal diaphragm can 

be particularly significant for boxes supported on single bearings. Article C6.11.8.1.1 provides 

the following equation for checking the bottom box flange at interior pier sections under the 

strength limit states 

 
2 2 23( )bu bu by by d v f b h ycf f f f f f R R F      (5.4.10-1) 

 (AASHTO C6.11.8.1.1-1) 

 

Where 

 

fbu = the longitudinal flange stress due to major-axis bending of the box section,  

 

fby = the flexural stress in the flange caused by major-axis bending of the internal 

diaphragm over the bearings,  
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fd = the shear stress in the flange caused by the internal diaphragm vertical shear, and 

 

fv = the St. Venant torsional shear stress in the box flange. 

 

Equation (1) is simply a statement of the von-Mises yield criterion (Ugural and Fenster 2003) for 

a plate subjected to biaxial normal stress plus shear. Article C6.11.8.1.1 suggests the use of a 

flange width equal to 18tf with the internal diaphragm for simplified calculation of the stresses fby 

and fd. The shear stress fd may be estimated as  
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 (AASHTO C6.11.8.1.1-2) 

 

Where 

 

V = the maximum vertical shear in the internal diaphragm,  

 

Q = the first moment of one-half of the effective box flange area (9tf
2
) about the neutral 

axis of the effective internal diaphragm section, and 

 

I = the moment of inertia of the effective internal diaphragm section.  

 

The shear stress fv may be estimated using Eq. (5.4.7-3).  

 

Article C6.11.8.1.1 points out that for a box supported on two bearings, fby and fd in Eq. (1) are 

typically small and can often be neglected. In these cases, Eq. (5.4.9-2) will govern the resistance 

of the bottom box flange at an interior support. Theoretically, in cases where the bottom box 

flange is governed by Eq. (1), the top flange (i.e., the concrete slab in a tub girder or the top 

composite box flange in a closed-box section girder) should also be checked for its adequacy 

under the related biaxial and shear loading conditions.  

 

5.4.11  Concrete Slab 

 

AASHTO (2014) Article 6.11.1.1 states that the shear due to St. Venant torsion should be 

considered when designing the reinforcing steel for the concrete slab. Article 6.11.10 suggests a 

simple method for determining the torsional shear in the slab of closed box sections. For tub 

sections, Article 6.11.1.1 indicates that the slab should be considered to resist all the torsional 

shear acting on the top of the composite box section.  

 

5.4.12 Stepped, Variable Web Depth and Other Nonprismatic Box-Section Members 

 

With the exception of: 

 

1. Potential overall lateral torsional buckling of tub girders during construction, and  
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2. Potential lateral-torsional buckling of the top flanges between their brace points for tub 

girders subjected to positive bending under construction conditions (prior to the 

hardening or the concrete slab or the slab being made composite),  

 

all of the resistance checks for box section members are effectively cross-section based. For 

stepped, variable web depth and other general nonprismatic box-section members, the above two 

cases can be handled as discussed for I-section members in Section 5.3.6 of this module. For 

other cases, the resistance calculations for stepped, variable web depth and other nonprismatic 

box-section members are handled as discussed in the above Sections 5.4.6 through 5.4.11. 

 

5.4.13 Web Shear Strength  

 

The provisions of Article 6.10.9 are applied separately for checking each of the webs of box 

girders. These provisions have been discussed previously in Section 5.3.8 of this module. In 

applying these provisions, D is taken as the depth of the web along the slope of the web for 

inclined webs. Also, the factored shear force in each web is determined generally as  

 

Vui = Vu / cos  (5.4.13-1) 

 (AASHTO 6.11.9-1) 

 

Where 

 

Vu = vertical shear due on the inclined web under consideration and  

 

 = the angle of inclination of the web plate with respect to the vertical direction.  

   

For box girders in bridges not satisfying the requirements of Article 6.11.2.3, or with box flanges 

that are not fully effective according to the provisions of Article 6.11.11.1, Vu is to be taken as 

the sum of the flexural and St. Venant torsional shears.  

 

In checking Eq. (5.3.8-7) to determine whether the full or true Basler shear resistance is 

applicable for transversely stiffened webs designed utilizing the web postbuckling shear strength, 

the effective flange width bfc or bft of box flanges should be taken as the smaller of: 

 

 One-half the flange width between the webs plus the outside extension of the flange 

beyond the centerline of the web, or 

 

 18tf plus the outside extension of the flange beyond the centerline of the web.  

 

The above 18tf limit ensures that the I-section member web shear postbuckling resistance 

equations of Article 6.10.9 may be applied equivalently to box-section members.  

 

Articles 6.11.9 and 6.11.11.1 require that intermediate transverse web stiffeners shall be 

designed using the I-girder provisions of Article 6.10.11.1 (see Section 5.3.8).  
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5.4.14 Shear Connectors 

 

Article 6.11.10 points to the I-girder provisions of Article 6.10.10 for design of the shear 

connectors and provides the following additional supplementary requirements:  

 

 Shear connectors are required in negative moment regions. This is because these 

components are necessary to resist any significant St. Venant torsional shears that exist in 

composite box sections. Also, the simplified live load distribution factors of Article 

4.6.2.2.2b were developed for straight box sections that had shear connectors throughout 

the negative flexure regions.  

 

 For box girders in bridges not satisfying the requirements of Article 6.11.2.3 (for use of 

the simplified live load distribution factors), or with box flanges that are not fully 

effective according to the provisions of Article 6.11.11.1, the shear connectors are to be 

designed for the sum of the flexural and St. Venant torsional shears. For tub girders, the 

St. Venant shear increases the connector force on one flange and decreases it on the 

other. Article 6.11.10 requires that the same connector pitch shall be used on both 

flanges. Article C6.11.10 points out the conservatism of adding both the maximum 

flexural and torsional shears, since these are typically not produced by concurrent loads, 

but indicates that the calculation of the critical concurrent shear forces is not practical 

using current analysis tools.  

 

 The total area of the steel box section and the effective area of the concrete deck 

associated with that box are to be used in calculating the longitudinal force requirements 

in Eqs. (5.3.9-1) and (5.3.9-12).  

 

 The shear connectors on composite box flanges shall be distributed uniformly across the 

width of the flange. The transverse spacing between shear connectors on composite box 

flanges, st, shall satisfy 
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  (5.4.14-1) 

 

to help prevent local buckling of the flange plate subjected to compression. This limit is 

equal to the value of f = b/tf corresponding to Anchor Point 1 in Figure 79.  

 

 In composite box flanges, in addition to satisfying the requirements of Article 6.10.10, 

which require consideration of a radial force component in the shear connectors due to 

horizontal curvature, the vector sum of the longitudinal and St. Venant torsional shears 

must be considered. The St. Venant torsional shear may be determined by multiplying the 

shear on the top of the composite box section by the ratio of the transformed concrete 

deck to the total thickness of the top flange plus the transformed deck.  
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5.4.15  Comparison to the Wolchuk and Mayrbaurl (1980) Proposed Specifications for 

Long-Span Steel Box-Girder Bridges 

 

As discussed previously, AASHTO (2014) references the proposed Wolchuk and Mayrbaurl 

(1980) straight box-girder specification for information regarding the design of long-span steel 

box-girder bridges. This section highlights and explains a number of key differences between the 

AASHTO (2014) box-girder provisions and the above proposed FHWA provisions. One of the 

most important differences is that the FHWA specification does not address the special 

requirements necessary for horizontally curved bridges and bridges with skewed bearing lines. 

The AASHTO (2014) provisions address these considerations. As such, all of the discussions in 

this section pertain to straight box-girder bridges in which the bridge cross-section is subjected to 

minor torsion. Other differences discussed in the following subsections include the assumed 

effective widths for box flanges, the flexural resistance calculations for unstiffened and stiffened 

box flanges, and the web shear resistance calculations.  

 

5.4.15.1 Box flange effective widths 

 

Figure 80 is reproduced from AASHTO (2014) Article 4.6.2.6.4-1. This figure contains the 

approach recommended for calculation of flange effective widths in Wolchuk and Mayrbaurl 

(1980) and is based on research by Moffatt and Dowling (1975 and 1976). The particular 

adaptation in this figure is from Wolchuk (1997). The following discussion focuses on the 

effective width of the box flange between the webs within the positive moment regions and in 

the negative moment regions in the vicinity of interior supports. The reader is referred to 

Wolchuk and Mayrbaurl (1980) for the complete application of Figure 80.  

 

The effective width of a box flange is expressed as beff = B in Figure 80, where B is the total 

width between the webs. Curves (1) and (2) in the figure apply to the maximum positive moment 

region of simply-supported girders and continuous girders. The distance L = L1 is taken as the 

simple-span length or the distance between the points of inflection in determining the value of  

for these regions. Curve (1) applies to unstiffened box flanges while Curve (2) applies to 

stiffened box flanges with a ratio of the stiffener area to the box flange area As/Bt = 1. The values 

of  are to be determined for intermediate values of As/Bt by interpolation. One can observe that 

even for the extreme case of As/Bt = 1,  is approximately equal to 0.9 at L/B = 5 (the length to 

width ratio at which AASHTO (2014) assumes that the box flanges are fully effective. This 

supports the use of the AASHTO effective width rule within the positive moment regions (see 

the prior discussion in Section 5.4.2 of this module.  

 

Curves (5) and (6) in the figure apply to the cross-section over interior supports in continuous-

span girders. In this case, L = L2 is taken as the distance between points of inflection on each side 

of the support. If the distances between the support and the points of inflection on each side, C1 

and C2, are unequal,  is determined as the average of the values of  for L2 = 2C1 and L2 = 2C2. 

One can observe that at L/B = L2/B = 5, curves (5) and (6) indicate a range of  values of only 

0.55 to 0.62. This implies that the effective width assumptions in AASHTO (2014) Article 

6.11.1.1 are overly optimistic at continuous-span interior supports. 
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Curves (3) and (4) in the figure apply at the inflection points or simple-support locations. In 

Wolchuk and Mayrbaurl (1980), the value of  taken as a constant based on the value from 

Curves (1) and (2) within the middle L1/2 of the span, and is varied linearly between this value 

and the inflection point or simple support values, and linearly between the inflection point values 

and the interior support values. Obviously, this level of refinement in the assumed effective 

width may not be necessary.  

 

Dowling and Harding (1992) take a much more optimistic view regarding box flange effective 

widths than indicated from the earlier research by Moffatt and Dowling (1975 and 1976). They 

indicate that  

 

“Tests [Dowling et al. 1977] have shown, however, that for most practical cases shear 

lag can be ignored in calculating the ultimate compressive strength of stiffened or 

unstiffened flanges. This conclusion has been supported by the numerical studies of 

Lamas and Dowling [1980], Burgan and Dowling [1985], Jetteur et al. [1984] and 

Hindi [1991]. Thus a flange may normally be considered to be loaded uniformly 

across its width. Only in the case of flanges with particularly large aspect ratios [large 

L/B], or particularly slender edge panels or stiffeners [Burgan and Dowling 1985; 

Hindi 1991] is it necessary to consider the flange stability in greater detail.”  
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Figure 80  Flange effective widths, reproduced with permission from AASHTO (2014) and 

Wolchuk (1997). 

 

Results from recent studies by Chen et al. (2005), which included several tub-girder bridges, 

have already been summarized in Section 2.2.1. Based on these results, the highly simplified 

AASHTO (2014) Article 6.11.1.1 rule for the box flange effective widths is considered 

acceptable.  
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5.4.15.2 Resistance of unstiffened box flanges in compression 

 

As discussed in Section 5.4.9, the AASHTO (2014) provisions for the resistance of unstiffened 

box flanges are based on the theoretical elastic buckling for slender flange elements, i.e., plates 

satisfying Eq. (5.4.9-4). They are based on a sinusoidal transition curve and a plateau region 

developed based on an assumed analogy between column and plate buckling for stockier plates. 

The AASHTO (2014) equations are based in large part on the prior AASHTO Specifications that 

originate from the developments by Vincent (1969) and Mattock and Fountain (1967). Various 

studies of the behavior of geometrically imperfect plates containing different representative 

initial residual stresses indicate that the strength curve shown previously in Figure 79 is 

somewhat optimistic within the inelastic buckling range while it is somewhat conservative for 

highly slender flange plates.  

 

Figure 81 compares the range of plate strengths determined by Dwight and Little (1974) to the 

FHWA strength curve recommended by Wolchuk and Mayrbaurl (1980) and the AASHTO 

(2014) Article 6.11.8.2 curve previously illustrated in Figure 79, but using Rb, Rh and  equal to 

1.0. Wolchuk (1997) provides a detailed discussion of the background to these different curves. 

One can observe that a linear transition between Anchor Points 1 and 2 provides a reasonable fit 

to both the FHWA strength curve as well as the upper-bound strength curve for unwelded plates 

determined by Dwight and Little (1974) within the inelastic buckling region of the response. The 

more conservative predictions by AASHTO (2014) for highly slender flanges governed by 

elastic buckling is due to the substantial postbuckling resistance of these types of elements. It 

would appear that a linear transition curve between Anchor Points 1 and 2 is more appropriate to 

describe the nominal inelastic local buckling resistance of unstiffened box flanges. Although 

larger resistances are possible for slender flange plates, slender flange plates are generally an 

inefficient use of the material.  
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Figure 81  Resistance curves for unstiffened box flanges. 
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Regarding the broader application of the AASHTO (2014) flange resistance equations to cases 

involving combined axial compression and shear, Dowling and Harding (1992) indicate 

 

“The weakening effect of both types of initial imperfection [geometric imperfections and 

residual stresses], separately and together is now well understood and has been 

incorporated into the various design methods produced to predict the inelastic buckling 

strength of plated structures. The weakening effect of these imperfections is most 

pronounced in the range of intermediate slenderness, that is those slendernesses at which 

the critical buckling stress and the yield stress are roughly equal. The knockdown in 

strength is most marked for plates of intermediate slenderness subjected to compressive 

stress and is least pronounced for shear-loaded cases, being practically negligible for 

rectangular plates in pure shear.” 

 

Based on these observations, one can surmise that the handling of the effects of shear on the 

flange resistance in AASHTO Article 6.11 is accurate to somewhat conservative.  

 

5.4.15.3 Resistance of stiffened box flanges in compression 

 

The considerations regarding the local buckling strength of stiffened box flanges in compression 

are similar to those discussed in the previous section for unstiffened flanges. The AASHTO 

Article 6.11.8.2 provisions are based on the elastic buckling resistance of the stiffened flange 

assembly, and they map this resistance to an inelastic buckling resistance based on the sinusoidal 

transition curve discussed in the previous sections. Wolchuk and Mayrbaurl (1980) suggest a 

different approach in which the flange resistance is calculated based on the slenderness ratios L/r 

of the longitudinal stiffeners and w/tf of the flange plates between the stiffeners. This approach 

treats the plate stiffened by several equally-spaced longitudinal stiffeners as a series of 

unconnected struts, each of which consists of a stiffener acting together with an associated width 

of plate that represents the plate between the stiffeners. The solutions are expressed as a design 

interaction chart. The influence of the rigidity of transverse stiffeners is not included. Where 

transverse stiffeners are present, they are designed to be sufficiently stiff to ensure that they 

provide nodal lines acting as simple supports to the ends of the longitudinal stiffeners. The 

effective length of the longitudinal stiffeners, L, is taken as the distance between the transverse 

elements.  

 

It appears that direct comparisons of the predictions by the AASHTO (2014) approach versus the 

results from tests and refined numerical studies are not available. Dowling and Harding (1992) 

and Galambos (1998) show results from various Japanese tests that imply a linear transition for 

stiffened flange resistances. However, the definitions used for the flange local buckling 

coefficient are somewhat different than those in AASHTO (2014). Further studies are needed to 

carefully ascertain the relationship between the AASHTO (2014) curves and test results. 

Furthermore, Galambos (1998) indicates, “Design rules are needed for flanges stiffened by one 

or two stiffeners. The strut approach may not be appropriate in such cases, as it neglects the 

transverse stiffness of the plate and is a poor model for a single stiffener.” For the moderate 

length box girders targeted by the AASHTO (2014) provisions, the greatest economy is expected 

with only one or two longitudinal stiffeners at most. Ziemian (2010) indicates:  
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“For most stiffened flanges the strut approach is sufficiently accurate and is suitable 

for design purposes… The discretely stiffened plate approach is of interest mainly for 

plates with one or two stiffeners. For such flanges Eurocode 3 Part 1-5 offers a simple 

design method that considers the restraint from the plate to the buckling of the 

stiffeners… A more rational ultimate load method for the design of transversely 

loaded flanges needs to be evolved.”  

 

Section 7.3.3 of Ziemian (2010) provides a summary of the discretely stiffened plate approach 

from Eurocode 3, which is based on a theoretical model for buckling of a strut on an elastic 

foundation. 

 

5.4.15.4 Shear resistance 

 

Dowling and Harding (1992) state,  

 

“The key difference between plate and box girders which may influence the shear 

strength of the webs is the use of relatively thin flanges in box girders at the 

boundaries of the webs. Caution is needed in applying available tension field models, 

derived and verified in the context of plate girder webs, to the design of webs of box 

girders. Of major concern is the relatively small amount of support against in-plane 

movement which may be afforded to the web by the thin flange of a box girder, 

compared with the restraint offered by the thicker and narrower flange of a 

corresponding plate girder.” 

 

Wolchuk and Mayrbaurl (1980) express similar concerns and suggest the use of the true Basler 

shear strength formula, Eq. 5.3.8-9, in all cases for box-section members.  In addition, Ziemian 

(2010) indicates: 

“Further research is needed into the buckling strength of transversely stiffened webs 

and their stiffeners.” 

 

However, recent studies by Yoo and Lee (2006) have demonstrated in detail that an external 

anchorage system is not necessary for the development of substantial web postbuckling shear 

strength. These investigators show that the diagonal compression continuously increases near the 

edges of panels after buckling. Due to this increase, tractions normal to the edges of the panels 

are not necessary for equilibrium. Similarly, numerous investigators, e.g., Yoo and Lee (2006), 

Kim et al. (2007), Stanway et al. (1996), Rahal and Harding (1990) and Horne and Grayson 

(1983) have shown that intermediate transverse stiffeners are not subjected to significant axial 

compression due to tension field action. Furthermore, the definitions of bfc or bft for use in Eq. 

(5.3.8-7) to check the limits of applicability of the full Basler tension-field model (Eq. (5.3.8-8)) 

versus the true Basler model (Eq. (5.3.8-9)), explained in Section 5.4.13 of this module, appear 

to be sufficient to ensure the equivalent application of the I-section member web shear 

postbuckling resistance equations to box-section members.  
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5.5 Miscellaneous Flexural Members 

 

5.5.1 Introduction 

 

Article 6.12 of AASHTO (2014) addresses the flexural resistance of various rolled or built-up 

noncomposite or composite members used primarily in trusses and frames or in miscellaneous 

applications subjected to bending, often in combination with axial loads. In many cases, the 

Article 6.12 provisions are based on the AISC (2010) Specification provisions.  However, there 

are some significant differences. This section provides a succinct overview of the corresponding 

AASHTO (2014) and AISC (2010) provisions.  

 

5.5.2 I-Section Members in Weak-Axis Bending 

 

The nominal flexural resistance of I-section members subjected to weak-axis bending is defined 

by AASHTO (2014) Article 6.12.2.2.1 as the corresponding fully-plastic resistance  

 

Mn = Mp = Fyf Zy (5.5.2-1) 

 (AASHTO 6.10.2.2.1-1) 

 

for cross-sections in which the largest flange slenderness bf/2tf is less than or equal to the 

compact-flange limit pf given by Eq. (5.3.5-16). For unusual cases where the flanges have 

different yield strengths, the smaller of these yield strengths should be used in checking the 

flange compactness and in calculating Mp. The web contribution to Mp is generally small, and 

hence hybrid web effects are ignored. For cross-sections with the largest flange slenderness 

greater than pf but less than the noncompact flange limit rf given by Eq. (5.3.5-26), with Fyr 

taken equal to the smaller Fyf and kc taken equal to 0.76, the flexural resistance is assumed to be 

governed by inelastic flange local buckling (FLB). For Fyr = Fyf and kc = 0.76, Eq. (5.3.5-26) 

becomes 

 

0.83rf

yf

E

F
   (5.5.2-2) 

 (AASHTO 6.10.2.2.1-5) 

 

The theoretical elastic FLB coefficient for a linear stress distribution across the flange width, 

with the maximum compressive stress at the flange tip and zero stress at the web-flange juncture, 

is 0.57 for simply-supported edge conditions and 1.61 for fixed edge conditions at the web-

flange juncture (Ziemian 2010). The value kc = 0.76 is taken as a reasonable value given some 

restraint from the web and from the portion of the flange loaded in flexural tension on the 

opposite side of the web. In setting Fyr = Fyf, the influence of residual stresses is neglected. This 

is justified due to the strain gradient across the flange width, as well as the relatively small value 

of kc = 0.76 compared to potential theoretical values. Therefore, the moment capacity 

corresponding to Fyr = Fyf is the nominal yield moment My = Fyf Sy, where Sy is the elastic section 

modulus for minor-axis bending. If the above values are substituted into the linear equation 

representing the inelastic buckling resistance between Anchor Points 1 and 2 in Figure 60 (with 

Rb taken equal to 1.0 since the web flexural stress is zero), one obtains 
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 (AASHTO 6.12.2.2.1-2) 

 

where f = larger bf/2tf of the two flanges. Equation (2) gives rf = 14.1 for Fyf = 100 ksi, which is 

larger than the maximum bf/2tf = 12 permitted for I-sections in AASHTO Article (6.10.2.2) (see 

Eq. 5.3.2-3). Therefore, Article 6.12.2.2 does not define a weak-axis bending resistance based on 

elastic FLB.  

 

The inelastic FLB resistance is slightly different in AISC (2010). AISC (2010) uses kc = 0.76 and 

Fyr = 0.7Fy in its calculation of rf, . The resulting AISC inelastic FLB resistance approaches 

AASHTO FLB resistance as the flange slenderness approaches the compact limit given by Eq. 

(5.3.5-16).  However, it tends to be significantly more conservative than the AASHTO resistance 

for more slender flanges.  

 

It is important to note that for I-section members subjected to major-axis bending combined with 

flange lateral bending due to minor-axis flexure or torsion, the one-third rule equations discussed 

in Section 5.3.7 of this module apply as long as Eq. (5.3.7-5) is satisfied. The one-third rule 

equations provide a more accurate representation of the resistance and should be utilized rather 

than the above equations in these cases.  

 

5.5.3 Noncomposite Box-Section Members 

 

AASHTO (2014) Article 6.12.2.2.2 addresses the flexural resistance of noncomposite box-

section members. The provisions in this article assume that the flexural resistance fMn is 

unaffected by flange or web local buckling.  

 

For general box-section members, the validity of neglecting of flange local buckling at Mu = 

fMn is ensured conservatively by the Article 6.9.4.2 limits on the flange slenderness (see Eq. 

(5.2.4-4) and Table 5 and Table 6), as long as the applied stresses fa + fb are not substituted for Fy 

as permitted at the end of this article. For box-sections used as arch ribs, the validity of 

neglecting flange local buckling is often but not necessarily always ensured by the Article 

6.14.4.3 flange slenderness limits, Eqs. (5.2.4-20) and (5.2.4-21)). The validity of neglecting 

flange local buckling is ensured if Eq. (5.2.4-4) is satisfied for the rib flanges and flange 

overhangs with kc taken equal to 4.8 and 0.50 respectively (see Table 5 and Table 6).  

 

Web bend buckling at Mu = fMn generally is not precluded for webs proportioned by the Article 

6.14.4.2 web slenderness requirements (see Eqs. (5.2.4-18) and (5.2.4-19) and the discussions in 

Section 5.2.4 of this module). Equation (5.3.10-2) must be satisfied to ensure that web local 

buckling will not influence the calculation of the AASHTO (2014) fMn in general box-section 

members, including solid-web arch ribs.  

 

Section 5.6.3 discusses the appropriate calculation of beam-column resistances for cases of 

combined axial compression and bending when flange or web local buckling is not precluded at 

Mu = fMn. 
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Based on the assumption that flange and web local buckling is precluded at the limit of the 

flexural resistance, the AASHTO (2014) Article 6.12.2.2.2 expression for the flexural resistance 

of noncomposite box-section members is derived as follows.  The derivation starts with the 

traditional CRC inelastic column strength equation (Ziemian 2010) written in terms of moments, 

i.e., 
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 (AASHTO C6.12.2.2.2-5) 

where  

 

.e LTB y

b
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L


  (5.5.3-2) 

 (AASHTO C6.12.2.2.2-1) 

 

is the theoretical elastic LTB bending resistance for uniform bending (i.e., the beneficial effects 

of moment gradient are neglected).  

 

If one substitutes G = E/2(1 – ) = E/2.6 and  
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 (AASHTO C6.12.2.2.2-3) 

 

into Eq. (2), where 

 

A = the area enclosed within the centerlines of the plates, 

   

b = the clear distance between the plates, and  

 

t = thickness of the plates.  

 

and then substitutes Eq. (2) into Eq. (1), the nominal flexural resistance may be expressed as  
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 (5.5.3-4) 

 

 (AASHTO 6.12.2.2.2-1) 

after some algebraic manipulation.  

 

Equation (5.5.3-4) is not intended for checking of closed-box section girders in their 

noncomposite condition during construction. It is intended for checking of homogeneous doubly-
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symmetric box-section members in trusses, frames, arches, and other miscellaneous applications. 

The checking of closed-box section girders in their noncomposite condition is addressed 

previously in Section 5.4.8 of this module. For these sections, noncomposite stiffened or 

unstiffened box-flanges in compression are checked for a flange local buckling limit state as 

illustrated in Figure 79, and the box-flanges in tension are checked for the tension yielding limit 

state represented by Eq. (5.4.7-4). The lateral-torsional buckling limit state is assumed not to 

govern, and no LTB check is required. Of course, the b/t ratios for the web and flange plates of 

box girders can be significantly larger than the b/t limits required for the miscellaneous box-

section members for which Article 6.12.2.2.2 applies.  

 

AISC (2010) takes a different approach in quantifying the flexural resistance of homogeneous 

doubly-symmetric noncomposite box-section members. The AISC (2010) box-section member 

provisions address cases with compact, noncompact or slender unstiffened flanges (i.e., no 

longitudinal stiffeners) and compact or noncompact webs. The AISC rules neglect the LTB limit 

state, partly because of the minor reduction in the LTB resistance obtained for uniform bending 

(but using a linear transition equation for the inelastic buckling region rather than the CRC Eq. 

(1)), and partly because a moment modifier Cb only slightly greater than one makes this 

reduction nonexistent. Furthermore, AISC (2010) allows the calculation of resistances larger 

than My and gives Mn = Mp if the compression flange and the web of the section are compact. 

The AISC (2010) Section F7 provisions define the FLB resistance as  
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 (AISC F7-2)) 

 

for box-section members with noncompact flanges. This equation gives Mn = Mp for  
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where the above pf is the AISC compactness limit for box flanges. It gives Mn = Myc for  
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 (5.5.3-7) 

 

where rf is the general AISC limit for a noncompact box flange. For larger flange slenderness 

values, the AISC FLB resistance is expressed as 

 

Mn = Fyc Seff (5.5.3-8) 

 (AISC F7-3) 

 

where Seff is the effective section modulus determined using the effective width of the 

compression flange from Eq. (5.2.4-10) with f = Fyc.  
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Section F7 of AISC (2010) handles the influence of a noncompact web by requiring an 

independent web local buckling (WLB) limit state check: 
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 (AISC F7-5) 

 

This equation gives Mn = Mp for  
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where pw is the AISC web compactness limit for box sections, and it gives Mn = My for  
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which is the noncompact limit for box-section member webs in AISC (same as the noncompact 

limit for I-section member webs).  

 

The AISC (2010) equations generally give Mn > Myc as long as the compression flange is not 

slender. However, the AASHTO (2014) Eq. (4) generally gives Mn slightly less than Myc. The 

AISC (2010) equations provide the most representative characterization of the flexural resistance 

of straight box sections having compact or noncompact webs without longitudinal stiffeners. 

Conversely, the AASHTO (2014) Article 6.11.3 provisions are the most appropriate for checking 

of box girders in their noncomposite condition, since these types of members often have slender 

webs and are horizontally curved. Equation (4) from AASHTO (2014) Article 6.12.2.2.2 is 

recommended for box-section arch ribs, particularly for arch ribs with longitudinally-stiffened 

webs. This is because the web and web longitudinal stiffener requirements of AASHTO Article 

6.14.4.2 do not address the development of flexural capacities larger than Myc (see Section 5.2.4 

of this module), and Eq. (4) provides some additional conservatism with respect to potential LTB 

limit states for these types of members. Equation (4) is generally conservative compared to the 

AISC (2010) provisions for box-section members where both the AASHTO and the AISC rules 

are applicable.  

 

5.5.4  Circular Tubes 

 

AASHTO (2014) adopts the following equations directly from AISC (2010) for the nominal 

flexural resistance of noncomposite circular tubes having D/t ratios less than 0.45E/Fy:  

 

Mn = Mp  for D/t ≤ 0.07 E/Fy (5.5.4-1) 

  (AASHTO 6.12.2.2.3-1, AISC F8-1) 
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  (AASHTO 6.12.2.2.3-3 & 6.12.2.2.3-4, AISC F8-3 & F8-4) 

 

The failure modes and postbuckling behavior of these types of members can be grouped into the 

following three categories (Sherman 1992; Ziemian 2010): 

 

1. For D/t less than about 0.05E/Fy, a long inelastic plateau occurs in the moment-rotation 

curve. The cross-section gradually ovalizes, then local wave buckles eventually form, 

after which the moment resistance slowly decays. The flexural resistance may exceed the 

theoretical plastic moment due to strain hardening.  

 

2. For 0.05E/Fy < D/t < 0.10E/Fy, the plastic moment is nearly achieved but a single local 

buckle develops and the moment decays slowly with little or no inelastic plateau.  

 

3. For D/t > 0.10E/Fy, multiple buckles form suddenly with little ovalization, and the 

bending moment drops rapidly to a more stable level.  

 

The above equations reflect the above regions of behavior for specimens with long constant 

moment regions and little restraint against ovalization at the failure location. They are based on 

five North American studies involving hot-formed seamless pipe, electric-resistance-welded pipe 

and fabricated tubing (Sherman 1992; Ziemian 2010).  

 

5.5.5 Tees and Double Angles in Strong-Axis Bending 

 

AASHTO (2014) uses the AISC (2010) equations in large part for calculation of the flexural 

resistance of tees and double angles. For bridges, one of the most important practical usage of the 

AISC equations is in determining the capacity of Tee-section members subjected to eccentric 

axial tension or compression (due to the attachment of the Tee flange to end gusset plates). The 

AISC (2010) and AASHTO (2014) provisions utilize a simplified elastic LTB equation 

developed by Kitipornchai and Trahair (1980). Ellifritt et al. (1992) review this equation and 

other prior AISC equations for tees and compare the results to experimental tests. The AISC 

(2010) and AASHTO (2014) LTB resistances are expressed as  

 

2

max1
y

n

b

EI GJ
M B B M

L


    
 

 (5.5.5-1) 
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d is the total depth of the section, the plastic moment capacity is defined as  

 

Mmax = Fy Zx < 1.6My  for stems in tension (5.5.5-3a) 

   < My  for stems in compression (5.5.5-3b) 

     (AASHTO 6.12.2.2.4-1, AISC F9-1 to F9-3) 

     

My = the yield moment of the cross-section, based on the distance to the tip of the tee 

stem,  

 

and the other parameters have been defined previously. The plus sign in Eq. (2) applies when the 

stem is in tension and the minus sign applies when the stem is in compression. If the tip of the 

stem is in compression anywhere along the unbraced length, the provisions require the use of the 

negative value of B. The 1.6My limit on Mmax for cases with the stem in tension is intended 

indirectly to eliminate situations where significant yielding of the stem would occur at service 

load levels. Also, the AISC and AASHTO provisions require checking of flange local buckling 

(FLB) when the flange is subjected to flexural compression. The FLB resistance may be 

expressed as  

 
y

y

yfcfc

yppn
M

FE

FEtb
MMMM 6.1

/62.0

/38.02/
7.0 













 
   (5.5.5-3) 

 (AASHTO 6.12.2.2.4-4, 5 & 6, AISC F9-6) 

 

for tee section flanges with slenderness values ranging between the compact and noncompact 

limits, which are the same limits as for rolled I-section members (see Eqs. (5.3.5-16) and (5.3.5-

26)). AISC (2010) also provides a resistance equation for tee sections with slender flanges. 

However, none of the ASTM A6 tee sections have slender flange elements and the 

corresponding bf/2tf values for elastic FLB are larger than the AASHTO Article 6.10.2.2 limit for 

I-sections. This limit is assumed as an intended AASHTO (2014) maximum for tee sections. 

 

Equation (1) does not contain any Cb factor. The Cb factor used for I-section members is 

unconservative for tees with the stem in compression (AISC 2010). For these cases, Cb = 1.0 is 

appropriate. For reverse curvature bending, the portion with the stem in compression may govern 

the LTB resistance even though the corresponding moments may be small relative to other 

portions of the unbraced length. This is because the LTB strength of a tee with the stem in 

compression is substantially smaller than that for the stem in tension. Since the LTB strength is 

sensitive to the moment diagram, AISC (2010) conservatively takes Cb = 1.0 for all cases. The 

commentary of AISC (2010) also cautions that in cases where the stem is in tension, the 

connection details should be designed to minimize end restraining moments that may cause the 

stem to be in flexural compression.  

 

AASHTO (2014) does not provide any p or r limits for local buckling of tee stems loaded in 

flexural compression. This is because the above LTB equations give the stem local buckling 

strength in the limit of Lb = 0. By substituting Lb = 0 into Eqs. (1) and (2), one obtains Mn = 0/0. 

However, by using L’Hospital’s rule, the following equation is obtained in the limit of zero 

unbraced length (AISC 2005): 
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 (AISC C-F9-1) 

 

The 2010 AISC Specification provides explicit equations for the local buckling strength of Tee 

stems in flexural compression. The AISC (2010) Commentary indicates that the former approach 

was correct, but that additional explicit equations are provided in the latest Specification to 

alleviate confusion among users of the Specification. The 2010 Commentary provides a 

derivation of these updated explicit equations, which strictly speaking, are unnecessary.  

 

The AISC (2010) Commentary also provides guidelines for calculating the resistance of tees and 

double-angles bent about the y-axis. This case is not addressed in this module, since it is 

expected to be rare for bridge applications.  

 

5.5.6 Channels in Strong- and Weak-Axis Bending 

 

AASHTO (2014) adopts the AISC (2010) provisions for calculation of the flexural resistance of 

channels. AISC (2010) uses a generalized form of the compact I-section member equations for 

channels subjected to major-axis bending. This generalized form simply uses  
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1               for doubly-symmetric I-shapes
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 (5.5.6-2) 

 

in place of Eq. (5.3.5-20). This equation simply allows a conversion from the implicit warping 

constant Cw for doubly-symmetric I-section members to the Cw for channel sections. This 

generalized form also uses Eq. (5.3.5-21) for the radius of gyration term rt. The LTB resistance 

equations, i.e., Eqs. (5.3.5-19), (5.3.5-24), etc., are otherwise unchanged. The AISC (2010) 

equations for channels assume compact flanges and webs. All of the ASTM A6 channels have 

compact flanges and webs for Fy < 65 ksi. As such, the flanges and webs of fabricated channels 

must satisfy Eqs. (5.3.5-16) and  

 

3.76
w y

D E

t F
  (5.5.6-3) 

respectively.  

 

The AISC (2010) resistance equations for channels in major-axis bending are based on the 

assumption that the other members that frame into the channel are sufficient to restrain the 

twisting of the member (Johnston 1976; McGuire 1968). Based on this assumption, bending 

without twisting occurs between the supports.  
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AASHTO (2014) also bases its provisions for weak-axis bending of channels on the 

corresponding AISC (2010) Section F6 provisions.  For channel-section members subjected to 

minor-axis flexure, AISC (2010) uses its equations for minor-axis flexure of I-section members 

(see Section 5.5.2 of this module). AISC (2010) places a limit of 1.6FySy on the maximum 

minor-axis bending flexural resistance. For I-section members, the shape factor Zy/Sy is nearly 

always less than 1.6 (only four ASTM A6 W-shapes have a Zy/Sy > 1.6). However, for channel-

sections, Zy/Sy is generally greater than 1.6. Similar to the Mmax = 1.6My limit for tee-sections 

with the stem in tension, the use of Mmax = 1.6FySy for channel sections is intended to indirectly 

prevent substantial yielding at service load levels. Interestingly, the AISC (2010) Section F6 

provisions do not give any restriction on the slenderness of the web for channels in weak-axis 

bending. However,  if the web is loaded in flexural compression, the AISC Section F6 provisions 

are based implicitly on a compact web response.  The slenderness limit  

 

yw
F

E

t

D
12.1  (5.5.6-4) 

 

may be taken as a sufficient requirement to ensure the compact behavior of the web in this case.  

AASHTO (2014) specifies Eq. (5.5.6-3) instead, which is in error since this equation is for a web 

bent about an axis normal to its plane.  

 

5.5.7 Rectangular Bars and Rounds 

 

In addition, AASHTO (2014) uses the AISC (2010) for calculation of the flexural resistance of 

rectangular bars and rounds. For rectangular bars bent about their major-axis, the AISC (2010) 

resistances are based on lateral-torsional buckling and have the same form as shown previously 

in Figure 60. For these member types, the maximum potential resistance is  

 

Mmax = Mp (5.5.7-1) 

 (AASHTO 6.12.2.2.7-1, AISC F11-1) 

 

Anchor Point 1 has the abscissa 

 
2

0.08p

y

t E
L

d F
  (5.5.7-2) 

 

where d and t are the section depth and width respectively, and Anchor Point 2 has the abscissa 
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t E
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d F
   (5.5.7-3) 

 

and an ordinate of My (i.e., residual stress effects are neglected at the elastic-to-inelastic LTB 

transition point). Furthermore, the nominal elastic LTB capacity may be expressed for these 

sections in terms of the bending moment or in terms of the maximum bending stress, 

respectively, as: 
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 (AASHTO 6.12.2.2.7-3, AISC F11-3 & F11-4) 

 

For solid rounds and rectangular bars bent about their minor axis, AISC and AASHTO give the 

flexural resistance as  

 

Mn = Mp < 1.6My (5.5.7-6) 

 

One might note that AISC (2010) and AASHTO (2014) also specify the limit of 1.6My with Eq. 

(5.5.7-1).  However, since the shape factor for a rectangular bar is equal to 1.5, the limit 1.6My is 

never reached for these sections.   

 

5.5.8 Single Angles 

 

Single angles are generally not intended as flexural members in bridge construction. 

Furthermore, the practical condition of flexure due to eccentric axial compression is addressed 

via the equivalent slenderness, KL/r, expressions discussed in Section 5.2.3 of this module, and 

the practical condition of flexure due to eccentric axial tension is addressed via the shear lag 

coefficient U (see Section 5.5.1). Therefore, the calculation of the flexural resistance of single-

angle members is not addressed in this document. The reader is referred to AISC (2010) and the 

references provided in the commentary of the AISC Specification for flexural resistance 

equations and discussion of the flexural behavior of single-angle members.  

 

5.5.9 Concrete-Encased and Filled Members 

 

5.5.9.1  AASHTO (2014) - AISC (1999) approach 

 

For concrete-encased shapes that satisfy specific detailing requirements on the lateral and 

longitudinal reinforcement, AASHTO (2014) Article 6.12.2.3.1 defines the flexural resistance 

for members that are not subjected to any axial compression as the smaller of: 

 

1. The plastic moment resistance of the steel section alone, Mps, and 

2. The yield moment of the composite section, Myc, determined accounting for the different 

moments applied to the noncomposite, long-term composite, and short-term composite 

cross-sections, and neglecting any of the concrete loaded in tension.  

 

The concrete is assumed to prevent local buckling of the steel, and hence concrete-encased 

shapes are not subject to the width/thickness limitations of Article 6.9.4.2 (discussed in Section 

5.2.4 of this module).  
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Furthermore, for concrete-encased shapes subjected to combined compression and flexure with 

Pu/cPn > 0.3, Article 6.12.2.3.1 specifies that the flexural resistance may be calculated as 

 

( 2 )

3 2 1.7

c rs yrs w yc
n ps w y

c c

H c A F A FH
M M A F

f B

  
    

 
 (5.5.9-1) 

 (AASHTO 6.12.2.3.1-3) 

 

Where 

 

Ars  = total area of the longitudinal bar reinforcement in the composite column cross-

section, 

 

Aw = the web area of the structural steel section, d tw, 

 

Bc = the width of the composite cross-section perpendicular to the plane of flexure, 

 

Fy = the yield strength of the structural steel section, 

 

Fyrs  = the yield strength of the reinforcing steel, 

 

Hc   = the depth of the composite cross-section in the plane of flexure, 

 

Mps  = the fully-plastic resistance of the steel section, 

 

c  = the average distance from the compression face to the longitudinal reinforcement 

adjacent to that face and the distance from the tension face to the longitudinal 

reinforcement adjacent to that face, 

 

cf   = the specified minimum 28-day compressive strength of the concrete. 

 

Equation (1) gives a simplified estimate of the appropriate fully-plastic flexural resistance for use 

with the AASHTO (2014) beam-column strength interaction equations. The first, second and 

third terms of this equation are the estimated plastic moment contributions from the steel shape, 

the reinforcing bars, and the reinforced concrete respectively. In the second term, it is assumed 

that at least one-third of the longitudinal bars in the cross-section can be considered to be located 

at the distance c from the tension and compression faces of the cross-section. To obtain the third 

term, the web of the encased shape is taken as a tension reinforcement for a concrete cross-

section with a flexural depth equal to half the overall depth of the composite section in the plane 

of bending.  

 

If Pu/cPn is less than 0.3, AASHTO Article 6.12.2.3.1 requires that the flexural resistance shall 

be determined by a straight-line transition between the value obtained from Eq. (1) at Pu/cPn = 

0.3 and the flexural resistance at Pu = 0.  

 

The above approach is supported by comparisons to 44 beam-column tests with concrete-encased 

steel shapes (Galambos and Chapuis 1980). This approach is essentially the same as the method 
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detailed in AISC (1999). The only difference is that the AASHTO procedure does not allow for 

any consideration of the influence of shear connectors. The AISC (1999) provisions allow the 

flexural resistance at Pu = 0 to be taken as the corresponding beam fully-plastic composite 

section resistance if adequate shear connectors are provided and the concrete longitudinal and 

lateral bars meet specific requirements. Also, when shear connectors are not provided, AISC 

(1999) specifies that either the steel section plastic moment resistance or the composite section 

yield resistance at Pu = 0 may be used in determining the nominal flexural capacity.  

 

For concrete-filled sections, AASHTO (2014) assumes the use of circular tubes and uses the 

following flexural resistance equations. These are the former AASHTO (2005) equations for 

noncomposite circular tube sections:  

 

Mn = Mps  for 
y

F

E

t

D
2   (5.5.9-2, AASHTO 6.12.2.3.2-1) 

and  

 

Mn = My for 
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F

E

t

D

F

E
8.82   (5.5.9-3, AASHTO 6.12.2.3.2-2) 

 

This appears to be a simplification of the AISC (1999) provisions. For filled sections, AISC 

(1999) specifies the use of the same approach as defined above for encased sections, but with Aw 

taken equal to zero in Eq. (1). This approach is supported by comparisons to 48 beam-column 

tests of concrete-filled pipe and tubing (Galambos and Chapuis 1980).  

 

AISC (1999) Section I2.4 specifies a number of shear connector requirements for transfer of the 

axial force from the steel to the concrete or vice-versa, to ensure that the steel and the concrete 

work compositely. For concrete-encased members, AISC (1999) Section I2.4 requires that an 

adequate number of shear connectors must be provided along the length of the member to 

develop the axial forces into the composite cross-section. The maximum spacing of these 

connectors is not allowed to exceed 16 in, and connectors are required on at least two faces of 

the steel shape in a configuration symmetrical about the cross-section. The commentary of AISC 

(1999) indicates that force transfer by bond is generally disregarded in encased members, but is 

commonly used in concrete-filled HSS members as long as the connections are detailed to limit 

local deformations. However, it notes that no guidelines are available for structures other than 

fixed offshore platforms. No specific guidelines are provided for the shear connector 

requirements in concrete-filled members in the AISC (1999) Specification. Also, no specific 

shear connector requirements are provided for development of the bending moments into the 

composite cross-section of concrete-encased or filled members.  

 

5.5.9.2 AISC (2010) Approach 

 

The AISC (2010) provisions for the nominal flexural resistance of concrete-encased and compact 

filled members are essentially the same as AISC (1999) for the case of Pu = 0. Also, presumably, 

Eq. (1) and the linear interpolation between this equation and the strength at Pu
 
= 0 is still 

allowed for concrete encased members where the shear transfer between the concrete and the 
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steel is not provided according to the Specification requirements. However, AISC (2010) 

emphasizes a direct plastic stress distribution based approach that provides significantly 

enhanced strength estimates for members that have adequate shear transfer between the concrete 

and the steel. Section 5.6.3 of this module explains this enhanced procedure. In addition, AISC 

(2010) provides additional equations that quantify a reduced flexural resistance for filled 

composite sections where the steel section is classified as noncompact or slender in flexural 

compression (see Section 5.2.7 for a description of these and other definitions of “compact,” 

“noncompact,” and “slender” in the AISC (2010) and AASHTO (2014) Specifications).  

 

AISC (2010) provides substantial new information about force transfer mechanisms and concrete 

anchorage and shear connector requirements for composite members.  

 

5.6 Combined Flexure and Axial Load 

 

5.6.1 Introduction 

 

Section 5.1 of this module addresses the resistance of members under concentric axial tension, 

Section 5.2 addresses the resistance of members under concentric axial compression, and 

Sections 5.3 through 5.5 address the flexural resistance of I- and box-section members and 

members with other miscellaneous cross-section profiles respectively. For members subjected to 

combined bending and axial load, commonly referred to as beam-columns, the AASHTO (2014) 

and AISC (2010) Specifications define the resistance by interaction equations that reduce to the 

above resistances in the limit of pure axial loading (with zero flexure) or flexure about a single 

principal axis (with zero axial load). Section 5.6.2 summarizes the strength interaction equations 

defined in AASHTO (2014) and in the primary AISC (2010) beam-column provisions. Section 

5.6.3 then discusses the physical interaction between the axial and flexural resistances for 

various types of noncomposite steel members. Finally, Section 5.6.4 outlines these interaction 

relationships for composite steel-concrete beam-columns. Section 5.6.5 provides concluding 

remarks.  

 

5.6.2 AASHTO (2014) and Primary AISC (2010) Beam-Column Interaction Equations 

 

AASHTO (2014) Articles 6.8.2.3 and 6.9.2.2 and the primary AISC (2010) Section H1 

provisions specify the following bilinear relationship to define the resistance of members 

subjected to combined axial loading and flexure 
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Where 

 

Pu = the maximum axial force along the member unbraced length under consideration 
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resulting from the factored loads, 

 

Mux and 

Muy 

= the maximum second-order elastic moments along the member unbraced length 

under consideration, taken respectively about the cross-section x- and y-axes,  

 

cPn = the factored tensile or compressive axial resistance corresponding to the 

unbraced length under consideration, 

 

fMnx and 

fMny 

= the factored flexural resistance about the cross-section x- and y-axes 

corresponding to the unbraced length under consideration.  

 

The above definitions are strictly applicable only for prismatic members. For nonprismatic 

members, Pu and cPn are based on the cross-section having the largest value of Pu/QPy = fa/QFy 

combined with the governing member elastic buckling load ratio for the unbraced segment e = 

Pe/Pu = Fe/fa (see Section 5.2.6). Similarly, Mux, Muy, fMnx and fMny are based on the cross-

section having the largest values of Mux/Mycx and Muy/Mycy for checking the lateral-torsional 

buckling limit state (in cases where this limit state is applicable), combined with the member 

elastic buckling load ratio e.LTB = Fe.LTB/fbu.max (see Section 5.3.6). In the above expressions, Mycx 

and Mycy are the nominal yield moments corresponding to the extreme fiber in compression for 

flexure about the cross-section x- and y-axes respectively. For checking of flange local buckling 

or tension flange yielding limit states, in cases where these limit states are applicable, the ratios 

Mux/fMnx and Muy/fMny are checked at all the cross-sections along the unbraced length under 

consideration. The largest values of Mux/fMnx and Muy/fMny from all the applicable flexural 

limit state checks are inserted into Eqs. (1) for checking the member resistance under the 

combined loading conditions. 

 

The largest value of Pu/cPn from all the applicable axial resistance limit states (i.e., tension 

yielding, tension fracture, flexural buckling about the cross-section x-axis, flexural buckling 

about the cross-section y-axis, torsional buckling or torsional-flexural buckling) is inserted in 

Eqs. (1) for checking the strength interaction. Similarly, the largest values of Mux/fMnx and 

Muy/fMny from all the applicable flexural resistance limit states (i.e., local buckling, yielding or 

lateral-torsional buckling) also are inserted in Eqs. (1). It should be noted that the largest values 

of Pu/cPn, Mux/fMnx and Muy/fMny may occur at different cross-sections along the length of the 

unbraced segment under consideration. This is in general a conservative simplification. The 

buckling limit states strictly do not correspond to an individual cross-section. They depend on 

the loadings, properties and boundary conditions along the full x- and y-axis unbraced lengths. 

For bridge engineering, the applied moments, Mux and Muy, are obtained in the vast majority of 

cases by applying amplification factors to first-order elastic moments obtained from structural 

analysis at the various required factored loadings.  

Strictly speaking, the Pu/cPn, Mux/fMnx and Muy/fMny ratios used in Eqs. (1) should be 

concurrent values taken from the same factored loading combination. However, this requires that 

the above process be applied separately for each factored load combination, including all the 

appropriate positions of live load on the structure. Although this is theoretically not a problem in 

theory for computerized assessment, such an approach can be prohibitive. This is particularly 

true when one realizes that the concurrent loadings giving the maximum value of the unity check 

in Eqs. (1) may actually occur for a situation where none of the above strength ratios are at their 
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individual maximum values. The maximum envelope values of Pu/cPn, Mux/fMnx and Muy/fMny 

may be combined conservatively for practical checking of the members.  

 

With one minor restriction (discussed subsequently), Eqs. (1) are applicable for all doubly- and 

singly-symmetric section members, including rolled I-sections, channels, tee-shapes, round, 

square and rectangular HSS, solid rounds, squares or rectangles, and any of the many possible 

combinations of doubly- or singly-symmetric members fabricated from plates and/or shapes by 

welding or bolting (AISC 2010). They also, except for one restriction, give an accurate to 

conservative characterization of the resistance of composite members subjected to combined 

axial loading and flexure (i.e., encased I-section members, concrete filled tubes, and I-members 

with a composite concrete slab).  Nevertheless, Eqs. (1) were developed predominantly based on 

studies of noncomposite compact I-section members subjected to combined axial loading and 

flexure. Therefore, in the following, the relationship between these equations and the physical 

responses of compact I-section beam-columns is summarized first. This is followed by a 

discussion of the predictions from Eqs. (1) versus the physical responses for other member types.  

 

5.6.3 Noncomposite Members 

 

5.6.3.1 In-plane resistance of doubly-symmetric I-section members subjected to axial load 

and major- or minor-axis bending  

 

Figure 82 shows representative nominal first-yield and “exact” fully-plastic axial force-moment 

strength envelopes for two short compact doubly-symmetric I-section members subjected to 

major-axis bending moment. These envelopes are identical for either axial tension or 

compression or for positive or negative bending moment. Therefore, only one quadrant of the 

strength envelopes is shown. One of the sections considered is a W40x167, which is 

representative of a “beam-type” wide-flange section (deep web and relatively narrow flanges). 

The other section is a W14x257, which is representative of a “column-type” wide-flange section 

(web depth and flange width nearly the same). The fully-plastic strength envelope is slightly less 

convex for the column-type section. However, the normalized initial-yield envelopes are 

essentially the same.  
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Figure 82  Representative first-yield and fully-plastic axial force-moment strength 

envelopes for short compact doubly-symmetric I-section members subjected to major-axis 

bending. 

 

The figure also shows the result from Eqs. (5.6.2-1) with c and f taken equal to 1.0. For these 

ideal short compact-section members, the nominal axial resistance Pn is equal to the cross-

section yield load Py (assuming that net section fracture does not govern the resistance in 

tension) and the nominal flexural resistance is equal to the section plastic moment capacity Mp 

(again assuming that the tension flange fracture flexural limit state does not govern the 

resistance). One can observe that Eqs. (5.6.2-1) provide a reasonable lower-bound fit to the exact 

fully-plastic strength envelopes.  

 

The nominal first yield curves in Figure 82 may be expressed simply as  
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in terms of the axial force and moment, or equivalently  
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in terms of the corresponding additive elastic axial and flexural stresses, neglecting residual 

stress effects. If nominal residual stresses of Fr are assumed in compression at the flange tips and 

in tension at the mid-width of the flanges, the corresponding first yield condition is given by 

these equations with Py, My and Fy replaced by (1-Fr/Fy)Py, (1-Fr/Fy)My and Fy-Fr.  

 

Figure 83 compares the nominal first yield and fully-plastic axial force-moment strength 

envelopes for the same two short compact doubly-symmetric I-section members to Eqs. (5.6.2-1) 

for the case of combined axial loading and weak-axis flexure. The W40x167 fully-plastic 

strength curve is again more convex than the corresponding W14x257 curve. However, the 
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normalized first-yield envelope is slightly smaller for the W40x167 compared to that for the 

W14x257. In this case, one can observe that both of the theoretical fully-plastic resistance 

envelopes are significantly more convex than Eqs. (5.6.2-1), and that Eqs. (5.6.2-1) appear to 

provide a rather conservative estimate of the true capacity. Although this observation is correct, 

it only applies to short “stub-columns” or to members loaded in weak-axis flexure and axial 

tension. Figure 84 compares the maximum in-plane strength envelopes for strong- and weak-axis 

bending and axial compression on representative finite-length column-type wide-flange members 

with L/r = 80, taken from Maleck (2001), to the nominal resistance predictions from Eqs. (5.6.2-

1). Although the stub-column (i.e., cross-section) strength envelope for weak-axis bending is 

significantly more convex than either of the Eqs. (5.6.2-1), or the exact fully-plastic strength 

envelopes for strong-axis bending, the beam-column resistances for all but very short members 

are similar regardless of the axis of bending. This is because the weak-axis flexural rigidity of an 

I-section reduces dramatically once yielding starts at the flange tips. The spread of yielding 

through the flanges has a less dramatic effect on the flexural rigidity as the first-yield strength is 

exceeded and the cross-section fully-plastic resistance is approached in major-axis bending. 

However, the larger reduction in the member stiffness that occurs for combined compression and 

weak-axis bending leads to larger inelastic stability (P-) effects, which in turn reduces the 

finite-length member resistance to a strength envelope far below the idealized stub-column 

strength. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

N
o

rm
a

liz
e

d
 A

x
ia

l 
F

o
rc

e
, 
P

/P
y

Normalized Moment, M/Mp

W40x167, fully-plastic resistance

W40x167, nominal first yield

W14x257, fully-plastic resistance

W14x257, nominal first yield

Eqs. (5.6.2-1)

 
 

Figure 83  Representative first-yield and fully-plastic axial force-moment strength 

envelopes for short compact doubly-symmetric I-section members subjected to minor-axis 

bending. 
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Figure 84  Representative maximum in-plane strength envelopes for strong- and weak-axis 

bending and axial compression on finite length column-type wide-flange members, from 

Maleck (2001). 

 

Figure 85 illustrates the behavior for the above weak-axis bending example in greater detail. This 

figure shows the strength envelope from Figure 84, where the moment is defined as the first-

order moment M1 = HL/4 at the maximum load capacity of the member, the corresponding 

internal maximum second-order inelastic moment at the midspan of the member, M2.inelastic = M1 

+ P2.inelastic, and the corresponding internal maximum second-order elastic moment M2.elastic = 

M1 + P2.elastic = AF M1. In these expressions, 2.inelastic is the “true” second-order inelastic lateral 

deflection relative to a straight chord at the midspan of the beam-column at the maximum load 

capacity of the member, including a nominal initial out-of-straightness of o = L/1000 as well as 

the influence of initial residual stresses, 2.elastic is the idealized second-order elastic displacement 

at the midspan for the nominally-elastic ideally-straight member, obtained from any legitimate 

second-order elastic analysis (e.g., a first-order elastic analysis combined with a second-order 

elastic amplification factor), and AF is the second-order elastic amplification factor for the 

member internal maximum moment. 
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Figure 85  Strength interaction curves in terms of different calculated moments, M1 = 

HL/4, Mu = M2.elastic = M1 + P2.elastic and M2.inelastic = M1 + P2.inelstic for the Figure 84 example 

beam-columns subjected to minor axis bending. 

 

The P-M1 and P-M2.inelastic curves in Figure 85 are obtained from refined distributed plasticity 

analyses of the beam-column. This type of analysis tracks the spread of yielding through the 

cross-sections and along the length of the member, including residual stress and initial geometric 

imperfections effects, and the corresponding gradual reduction in the member stiffness, with 

increases in the applied loads. Conversely, the P-M2.elastic curve is obtained by applying the 

second-order elastic amplification factor AF to the member maximum first-order moments M1 = 

HL/4. The P-M2.inelastic curve falls inside of the bounds of the fully-plastic strength curve for the 

cross-section (not shown but similar to the W14x257 fully-plastic resistance curve in Figure 83). 

This is because the maximum load capacity of the member is reached due to a combination of 

yielding and stability effects prior to full plastification of the midspan cross-section. Part of the 

differences between the curves based on Eqs. (5.6.2-1) and the “exact” strength curves in Figure 

84 and Figure 85 is due to the use of a single column strength equation for Pn. In general, the Pn 

from the Specification column strength equations tends to fall between the major- and minor-axis 

column strengths obtained from distributed plasticity analysis (see Figure 84). The accuracy of 

the fit by Eqs. (5.6.2-1) is generally improved if Pn is set to the corresponding column strength 

obtained from the distributed plasticity solutions.  

 

The AASHTO (2014) - AISC (2010) Eqs. (5.6.2-1) were established in large part based on curve 

fitting to the results from a large number of beam-column solutions similar to those illustrated in 

Figure 85. Based on the definition of the internal moment Mu as the maximum second-order 

elastic moment within the unbraced length under consideration, determined from an analysis of 

the nominally-elastic ideally-straight member (i.e., Mu = M2.elastic), the P-M2.elastic curve in Figure 

85 is the appropriate “exact” curve that the beam-column strength interaction equation 

represents. The AASHTO (2014) - AISC (2010) Eqs. (5.6.2-1) provide an accurate to 

conservative fit to the rigorous P-M2.elastic curves for all of the strong- and weak-axis bending 

cases studied in their development (LeMessurier 1985; Liew et al. 1992; ASCE 1997; Maleck 
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and White 2003). In general, Eqs. (5.6.2-1) give a superb fit for strong-axis bending and L/r from 

0 to 100. They are increasingly conservative for the weak-axis case when L/r is less than about 

40. This is due to the large shape factor and significant convexity of the cross-section fully-

plastic strength for weak-axis bending of I-shapes. They are moderately conservative for both 

axes when L/r is greater than 120. Also, for sidesway-inhibited cases, Eqs. (5.6.2-1) tend to be 

somewhat more conservative for beam-columns subjected to reversed-curvature bending than for 

cases involving single-curvature bending (Clarke and Bridge 1992). This is due to the fact that 

Eqs. (5.6.2-1) do not account for the influence of moment gradient on the shape of the strength 

envelope.  

 

A few attributes of Eqs. (5.6.2-1) deserve highlighting: 

 

 By curve fitting to the P-M2.elastic strength envelopes, the calculation of second-order 

effects via structural analysis (or by amplification of the first-order elastic internal 

moments) is clearly separated from the calculation of the member internal resistances Pn 

and Mn. Many prior steel design standards do not provide a clear separation between the 

consideration of second-order effects in the elastic structural analysis and the calculation 

of the member resistances. The separation of these two calculations facilitates the use of 

an explicit second-order elastic analysis to achieve a more accurate characterization of 

stability effects in cases where these effects are significant.  

 

 The bilinear form given by Eqs. (5.6.2-1), which provides an accurate characterization of 

the fully-plastic resistance for a short I-section member subjected to major-axis bending, 

also provides an accurate fit to the majority of the strong- and weak-axis P-M2.elastic 

strength envelopes.  

 

 The bilinear form given by Eqs. (5.6.2-1) combines the consideration of “member 

strength” and “member stability” into one single beam-column interaction curve. Many 

other prior and current steel design standards worldwide quantify the in-plane strength of 

steel beam-column members by a combination of two curves, one that addresses a 

member stability (or strength) limit and the other which addresses a member cross-

section strength limit. However, all beam-columns of finite length fail physically by a 

combination of inelastic bending and stability effects. Equations (5.6.2-1) provide a 

simpler representation of member strengths that is truer to the fundamental attributes of 

the beam-column resistance (at least for members that fail by in-plane bending).  

 

The reader is referred to Liew et al. (1992), ASCE (1997), and Maleck and White (2003) 

for further discussion of the in-plane strength interaction behavior of doubly-symmetric I-

section members subjected to axial loading and major- or minor-axis bending.  

 

The application of Eqs. (5.6.2-1) to other types of beam-column members and other types of 

strength limit states is generally ad hoc. Nevertheless, as noted in the previous section, within 

certain restrictions, these equations provide an accurate to conservative characterization of the 

member strength envelopes for all types of beam-column members. For instance, the in-plane 

beam-column resistance of compact square and rectangular welded box or HSS sections is very 

similar to that for I-section members in major-axis bending. The in-plane behavior of these types 
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of members is much the same as an I-section member with a single web thickness equal to the 

sum of the box or HSS section web thicknesses. The next section discusses the relationship 

between Eqs. (5.6.2-1) and the true in-plane and out-of-plane strength interaction curves for 

singly-symmetric members and/or members with noncompact or slender cross-section elements.  
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Figure 86  Representative first-yield and fully-plastic axial force-moment strength 

envelopes for a short compact singly-symmetric I-section member. 

 

Figure 86 shows representative first-yield and fully-plastic axial force-moment strength 

envelopes for a short compact singly-symmetric I-section member. Interestingly, these envelopes 

are not symmetric. The strength interaction curves have a bulge in the quadrants where the axial 

and flexural stresses are additive either in compression or in tension on the larger flange. Of 

course, similar to the above results for doubly-symmetric I-section members, the fully-plastic 

cross-section strength is only an upper-bound theoretical limit. The actual resistance for a general 

singly-symmetric finite-length beam-column can be influenced by a combination of yielding, 

overall member stability and/or local member and cross-section distortional stability effects. 

 

The dark solid curve in Figure 87 shows a representative strength envelope for a hypothetical 

simply-supported finite-length beam-column with noncompact and/or slender cross-section ele-

ments and a singly-symmetric cross-section profile. Also shown as dashed lines in the figure are 

the base AASHTO (2014) - AISC (2010) strength interaction curves given by Eqs. (5.6.2-1). 

White and Kim (2003) discuss the behavior of various strength interaction equations and review 

the limited experimental test results for prismatic doubly- and singly-symmetric I-section beam-

columns with noncompact and/or slender webs and compact, noncompact and slender flanges. 

They conclude that the bilinear strength curves given by Eqs. (5.6.2-1) provide an accurate to 

conservative characterization of the in-plane and out-of-plane resistances from the available 

tests. Galambos (2001a & b) proposes a refined procedure for determining the resistance of 

prismatic singly-symmetric compact I-section members and makes similar observations 
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pertaining to Eqs. (5.6.2-1). Generally, Eqs. (5.6.2-1) provide an accurate to slightly conservative 

characterization of the in-plane resistance of singly-symmetric I-section members when the 

smaller flange is subjected to additive flexural and axial stresses. However, these equations tend 

to be somewhat conservative relative to the physical beam-column in-plane and out-of-plane 

resistances in many cases involving singly-symmetric I-section members when the larger flange 

is subjected either to additive axial and flexural compression or tension. The studies by Lee and 

Hsu (1981) provide evidence of this conclusion for tapered web singly-symmetric I-section 

members. 
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Figure 87  Comparison of a representative strength envelope for a hypothetical simply-

supported finite-length beam-column with noncompact and/or slender cross-section 

elements, the AISC (2010) strength interaction curves (Eqs. (5.6.2-1)), and the cross-section 

yield and fully-plastic strength. 

 

The behavior for finite-length Tee- and double-angle beam columns is similar to that shown in 

Figure 87. However, particularly for members of these types with intermediate and longer 

lengths, the non-symmetry of the interaction curves is highly accentuated. Figure 88 illustrates 

this behavior along with the corresponding AASHTO (2014) - AISC (2010) strength for a 

representative simply-supported Tee-section member considered by Galambos (2001a). The two 

different solid curves in the figure denote capacities based on the in-plane strength limit states.  

The two dashed curves denote out-of-plane strength envelopes. Furthermore, the heavy lines 

illustrate the results obtained by the refined calculations from Galambos (2001a) whereas the 

thin lines indicate the resistances calculated by the AASHTO (2014) - AISC (2010) equations. 

One can observe that the bulge in the upper-right and lower-left quadrants is substantial for this 

member, and that the true strength along a radial line taken from the origin of the plot can be 

more than two times the strength estimate based on Eqs. (5.6.2-1) for some of the combinations 

of axial force and bending moment. However, in the lower-right and upper-left quadrants, where 
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the stem of the Tee-section is loaded in additive axial and flexural tension or compression, Eqs. 

(5.6.2-1) provide an accurate estimate of the “true” member strength.  

 

Unfortunately, practical connections for typical Tee-section struts used as bracing or cross-frame 

members are typically made to the flange. The corresponding bending moment due to the 

eccentricity of the connection generally places the member design in the upper-right or lower-left 

quadrants of Figure 88. Furthermore, the moment due to the eccentricity often places the design 

in the region of the strength envelopes that exhibit the largest bulge relative to Eqs. (5.6.2-1).  
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Figure 88  Representative simply-supported Tee-section member considered by Galambos 

(2001a) (WT18x67.5, Fy = 50 ksi, L = 20 ft). 

 

Although Figure 88 indicates substantial additional capacity compared to that predicted by the 

AASHTO (2014) - AISC (2010) procedures in the upper-right and lower-left quadrants of the 

response, one must be careful in applying these additional strengths. The conservatism in the 

lower-left quadrant is largely due to the fact that AISC (2010) limits the maximum flexural 

resistance to Mn = My (where My corresponds to first yielding at the tip of the stem, neglecting 

residual stress effects) for cases where the stem is loaded in flexural compression (see Section 

5.5.5 of this module). For typical eccentric connections on Tee-struts, the compressive elastic 

flexural stress at the tip of the stem, M/Sx, is larger than the corresponding axial tension, P/Ag. 

Therefore, some conservatism may be merited to protect against significant inelastic LTB 

distortion of the tee stem. Also, in the upper-right quadrant, the axial compressive resistance Pn 

is reduced due to local buckling effects (via the Q factor, see Section 5.2.4) for a large number of 

rolled Tee-sections. This is the case for the WT18x67 member considered in Figure 88. 

However, in the upper-right quadrant, if the elastic flexural stress due to the eccentric loading, 

M/Sx = Pe/Sx, is larger than the corresponding axial compression stress, P/Ag, the Tee stem is 

completely in tension. As such, the influence of the slenderness of the stem, d/tw, on the beam-

column resistance is expected to be minor. Furthermore, the AISC (2010) and AASHTO (2014) 
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flexural resistances in this quadrant are limited to Mn = 1.6My to avoid potential significant 

yielding at service load levels (see Section 5.5.5). 

 

Unfortunately, no simple method has been established at the present time (2010) for determining 

the strength envelopes for singly-symmetric members, accounting for the bulges in the upper-

right and lower-left quadrants illustrated in Figure 86 and Figure 87. In fact, it is probably fair to 

say that no simple manual method will ever exist for this calculation. 

 

5.6.3.1.1 Enhanced strength interaction curves for singly-symmetric members loaded 

in their plane of symmetry  

 

AISC (2010) Section H2 gives a separate beam-column interaction equation, which can be 

written for the case of bending within the plane of symmetry of a singly-symmetric member as 

 

1.0a b

a b

f f

F F
   (5.6.3-2) 

 (AISC H2-1) 

 

This equation is intended to capture some of the bulge in the upper right and lower left quadrants 

of Figure 88. The term fa in this equation is the required axial stress, Fa is the axial capacity in 

terms of stress, fb is the required flexural stress at the point under consideration, and Fb is the 

flexural capacity in terms of stress at the point under consideration, taken as fMn/S in LRFD 

where S is the corresponding elastic section modulus corresponding to the specific point in the 

cross-section under consideration.  

 

The implied advantage of Eq. (2) is that the Engineer is allowed to consider the sign of the axial 

and flexural stresses, which are additive on one side of the cross-section and subtractive on the 

other. Unfortunately, this equation does not provide any advantage relative to Eqs. (5.6.2-1) for 

singly-symmetric members subjected to bending in the plane of symmetry. This is because, 

generally, the Engineer must check all the applicable points within the cross-section. Hence, the 

extreme fiber where the axial and flexural stresses are additive always governs the resistance 

when the axial and flexural resistance terms Fa and Fb are calculated as specified in AISC 

(2010), i.e., Fa = cPn/A or tPn/A and Fb = fMc/S.  

 

White and Kim (2006) discuss a variation on Eq. (5.6.3-2), proposed by Sherman (2005), that 

provides some of the intended benefits for cases where the Mn associated with yielding or 

buckling of the smaller flange (or Tee stem) is substantially smaller than Mp. However, Eqs. 

(5.6.2-1) always provide a more liberal estimate of the capacities for members where Mn = Mp.  

 

The commentary to AISC (2010) Section H2 acknowledges the above problem and then 

discusses several ad hoc checks, similar to but different from Eq. (2). The AISC commentary 

points out that these checks are justified by the statement, “A more detailed analysis of the 

interaction of flexure and tension is permitted in lieu of Equation H2-1.”  

 

Galambos (2001a) details a procedure that accomplishes the intended objective of Eq. (2), i.e., 

capturing the bulge in the upper-right and lower-left quadrants of the strength envelope, for 
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prismatic singly-symmetric compact-section members loaded in their plane of symmetry. 

Galambos’ procedure also is applicable for doubly-symmetric I-section members as a special 

case. In these cases, it provides an enhanced assessment of the out-of-plane resistance for 

members subjected to major-axis bending. Galambos uses separate formulations for the in-plane 

and out-of-plane resistance to achieve these objectives. For the nominal in-plane resistance, 

Galambos uses the theoretical cross-section fully-plastic strength curve, but with an adjusted 

yield strength that varies from Fy at P = 0 to Fn at P = Pn, where Fn is the in-plane column 

resistance in terms of the axial stress and Pn is the in-plane column resistance in terms of the 

axial load. For the nominal out-of-plane strength, Galambos uses the fundamental equation for 

the elastic torsional-flexural buckling of a singly-symmetric member under combined axial load 

and uniform major-axis bending,  

 
2 2 2( )( ) ( )ey e o ez o e x e oP P r P r P M M P y      (5.6.3-3) 

 

to solve for the value of Pe at elastic torsional-flexural buckling corresponding to a given applied 

moment M. He then calculates the ordinate (i.e., the axial resistance) for the nominal out-of-

plane strength curve at this moment by substituting Pe/Po = Pe/Py into Eqs. (5.2.1). The terms Pey, 

o
r , Pez and yo are defined in Section 5.2.3 of this module. The term x is a cross-section 

monosymmetry parameter (Galambos 2001a; Ziemian 2010; White and Jung 2003b). 

 

The above approach works well for characterizing the resistance of prismatic compact doubly- 

and singly-symmetric I-section, Tee and double-angle members in cases where Mn = Mp at P = 0. 

However, for longer unbraced lengths, this approach predicts a lateral-torsional buckling 

resistance equal to the elastic critical moment Me.LTB in the limit of P = 0. For compact Tee and 

double-angle members, this approximation is consistent with the AISC (2010) nominal flexural 

resistance equations (see Section 5.5.5). However, for I-section members, this prediction is 

overly optimistic with respect to the Specification inelastic LTB flexural resistance (see Figure 

60). Galambos (2001b) suggests capping the nominal flexural resistance at M = Mn in these 

cases, where Mn is calculated using the applicable inelastic LTB resistance equations. This 

adjustment assumes that the member inelastic LTB resistance is unaffected by the presence of 

axial load, either positively for axial tension or negatively for axial compression.  

 

The AISC (2010) Specification provides simplified procedures that accomplish the objective of 

the above approach for doubly-symmetric rolled compact-element I-section members with KLz < 

KLy subjected to major-axis bending and axial tension or compression, i.e., an enhanced 

characterization of the out-of-plane resistance. Section 5.6.3 of this module summarizes these 

procedures.  

 

Ultimately, the simplest and most reliable determination of the strengths for the above types of 

beam-columns may be the use of carefully validated numerical procedures that give explicit 

maximum strength solutions, including the influence of appropriate nominal residual stresses and 

geometric imperfections. Such calculations are explicitly permitted by Appendix 1 of the AISC 

(2010) Specification. However, these types of analysis tools are not readily available for 

professional practice at the present time (2010).  

 



 235 

5.6.3.1.2 Usage of the AASHTO (2014) and primary AISC (2010) bilinear interaction 

equations with relaxed flange and/or web compactness limits 

 

The last paragraph of Article 6.9.4.2 in AASHTO (2014) states that for members designed for 

combined axial compression and flexure using Eqs. (5.6.2-1), the plate slenderness requirements 

summarized previously by Eq. (5.2.4-4) and Table 5 and Table 6 may be relaxed. These 

previously discussed requirements ensure that local buckling of the cross-section plate elements 

will not influence the behavior prior to developing the full yield strength of the member in 

uniform axial compression. Obviously, if the member compressive resistance in terms of the 

axial stress, Fn, is smaller than Fy, the plate slenderness limits necessary to prevent local 

buckling prior to reaching the column axial resistance should not need to be as stringent. Also, if 

the applied elastic stress level due to axial load plus bending in a given cross-section plate 

element is smaller than Fy, one might expect that the Eq. (5.2.4-4) requirements could be relaxed. 

Based on this logic, the last paragraph of Article 6.9.4.2 allows the Engineer to replace Fy in Eq. 

(5.2.4-4) by fa + fb, where fa = Pu/Ag, fb = Mu/S, Ag is the gross area of the cross-section and S is 

the applicable elastic section modulus to the extreme fiber of the plate element under 

consideration.  

 

Pn based on fa & fb at Point 1

Pn based on fa & fb at Point 2

Point 1

Point 2

Pn based on use of Fy in checking local plate buckling

Eqs. (5.6.2-1)

P

M
 

 

Figure 89  Effect of relaxing the plate slenderness limits by use of fa + fb rather than Fy in 

Eqs. (5.2.4-4), (5.2.4-19) and (5.2.4-20) (the use of fa in Eq. (5.2.4-17) and fa + fb/3 in Eq. 

(5.2.4-19) has a similar effect) 

 

Also, as previously discussed in Section 5.2.4 of this module, Article 6.14.4.2 specifies similar 

criteria for the plate elements in solid-web arch ribs. The only difference between the Article 

6.14.4.2 provisions and the above Article 6.9.4.2 rule is that Article 6.14.4.2 allows the Engineer 

to replace Fy by fa when checking the plate slenderness of the webs of solid-web arch ribs, and 

by fa + fb/3 when checking the b/t of web longitudinal stiffeners (see Eqs. (5.2.4-18) and (5.2.4-

19)).  

 

As noted in Section 5.2.4, if the above plate slenderness limits are relaxed, AASHTO (2014) 

Article 6.9.4.2.1 requires the use of a linear axial force-moment interaction equation rather than 

Eqs. (5.6.2-1). This is because the validity of Eqs. (5.6.2-1) for members containing slender 

cross-section elements under uniform axial compression is tied to the calculation of the 

resistance Pn based on the loading of the member as a column up to its maximum resistance in 
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uniform axial compression. If the plate slenderness requirements in Eqs. (5.2.4-4), or (5.2.4-18) 

through (5.2.4-21) are relaxed by the use of applied stresses rather than Fy, the calculated Pn is 

larger for smaller ratios of axial load to bending as shown in Figure 89. The bilinear shape given 

by Eqs. (5.6.2-1) already accounts approximately for this effect. The calculations are simpler and 

exhibit comparable accuracy to the use of a linear interaction equation with the above variable Pn 

if one simply uses Eqs. (5.6.2-1) with a single calculation of Pn determined as the “true” 

resistance of the member under uniform axial compression. Nevertheless, the effect of replacing 

Fy by fa + fb is typically small since the factored fa + fb is often close to Fy.   

 

5.6.3.2 Out-of-plane strength of doubly-symmetric rolled nonslender-element I-section 

members with KLz < KLy subjected to axial load and major-axis bending 

 

AISC (2010) specifies the following equation as an enhanced description of the out-of-plane 

resistance of doubly-symmetric rolled nonslender-element I-section beam-columns subjected to 

major-axis bending and axial compression: 
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 (AISC H1-2) 

 

where Pny is the nominal column strength for weak-axis flexural buckling in the out-of-plane 

direction, and Mnx(Cb=1) is the governing major-axis flexural resistance of the member based on 

the idealized case of uniform bending. The analytical basis for this equation comes from the 

solution of the differential equations of equilibrium for a simply-supported elastic member 

subjected to axial compression and unequal end moments (McGuire 1968). This solution yields 

the equation 

 
2

2 2
1 1

ey

b o ey ez ey ey ez

PM P P

C r P P P P P

  
    
  
  

 (5.6.3-5) 

 

where Pey is the out-of-plane column flexural buckling load (see Eq. (5.2.3-3)), Pez is the column 

torsional buckling load (see Eq. (5.2.3-1)) and  

 

x y

o

g

I I
r

A


  (5.6.3-6) 

 

is the polar radius of gyration of the cross-section. The term in the denominator on the left side 

of Eq. (5) is the square of the elastic lateral-torsional buckling resistance of the member, i.e.,  
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where Cb is the moment gradient modifier (see Section 5.3.5 of this module). Equation (4) is 

obtained by assuming Pez = 2.0Pny, which is a lower-bound value for all the ASTM A6 rolled 
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wide-flange section members with KLz < KLy, and by replacing Me(Cb=1) and Pey by the design 

resistances cPny and bMnx(Cb=1). The resulting equation provides a much improved assessment 

of the out-of-plane resistance of typical rolled column-type I-sections, particularly in cases where 

the design resistances are governed by inelastic buckling and/or yielding limit states.  

 

Equation (4) is a simplified version of a comparable equation implemented in the Australian 

AS4100 Standard (SAA 1998) based on research conducted by Cuk and Trahair (1986) and Cuk 

et al. (1986).  The simplifications relative to AS4100 are: 

 

 The use of Pez = 2.0Pny to remove the need for the calculation of Pez, and  

 

 The use of an appropriate Cb expression for flexure alone, whereas AS4100 provides a 

separate moment gradient modifier that captures enhanced moment gradient benefits for 

beam-columns subjected to moment and axial compression. 

 

The AS4100 equations are reviewed and compared to other beam-column strength calculations 

by White and Clark (1997 a & b). It is emphasized that the flexural resistance anchor point 

CbbMnx(Cb=1) is permitted to be greater than bMpx. The resulting out-of-plane resistance is 

“capped” by the in-plane resistance determined using Eqs. (5.6.2.1) but considering only the in-

plane strength terms, i.e., neglecting the potentially smaller values of cPny based on minor-axis 

flexural buckling and CbbMnx based on lateral-torsional buckling.  This “cap” is similar in 

concept to the way that the plateau strength Mmax serves as a cap on the general LTB strength of 

I-section beams subjected to moment-gradient conditions (Cb > 1).   

 

Figure 90 shows the shape of Eq. (5) for several values of Pez/Pey. For ASTM A6 wide-flange 

sections, Pez/Pey is generally greater than 2.0 when KLz < KLy.    However, it is not uncommon 

for this parameter to be only slightly larger than 2.0. In this case, one can observe that Eqs. 

(5.6.2-1), with cPny and fMnx(Cb=1) replaced by Pey and Me(Cb=1), provide a slightly liberal 

characterization of the theoretical beam-column elastic buckling resistance for small values of 

P/Pey. Interestingly, Eq. (5.6.2-1a) nearly matches Eq. (5) for P/Pey < 0.2 when Eq. (5) is used 

with Pez/Pey = . The base bilinear AISC (2010) beam-column strength curve defined by Eqs. 

(5.6.2-1) tends to be slightly conservative for large P/Pey when Pez/Pey is close to 2.0, whereas it 

is significantly conservative relative to Eq. (5) for large Pez/Pey. 
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Figure 90  Theoretical elastic out-of-plane strength envelope for simply-supported doubly-

symmetric I-section beam-columns versus the base AISC (2010) beam-column strength 

interaction curve. 

 

It is useful to note that Eqs. (4) through (9) are usually considered in the context of assumed 

torsionally-simple end conditions, i.e., twisting of the member ends is prevented but the member 

ends are free to warp and bend laterally. In cases where I-section members are continuous with 

less critical adjacent unbraced segments, the adjacent segments may provide substantial warping 

and weak-axis bending restraint at the ends of the critical unbraced length. This restraint 

potentially can increase the true member capacity substantially, but it is typically neglected in 

design practice. 

 

There is no implicit intent in the development of the AISC provisions to disallow the use of 

doubly-symmetric welded I-sections that have geometries comparable to rolled wide-flange 

sections.  However, the ratio Pez/Pny can be smaller than 2.0 for some thin-web welded I-sections. 

However, there is no precedent for applying Eq. (4) to beam-columns having noncompact or 

slender cross-section elements, or to any type of tapered-web or generally nonprismatic beam-

column members. It appears that there are no experimental or analytical solutions at the present 

time (2010) that substantiate the use of Eq. (4) for these cases. Some enhancement relative to 

Eqs. (5.6.2-1) is possible in certain situations. However, the precise shape of the beam-column 

strength envelope depends on the mode of failure (FLB, LTB or TFY in the limit of zero axial 

force, weak- or strong-axis flexural buckling, or torsional buckling about a centroidal axis or a 

constrained axis in the limit of zero moment, and variations between these limits for combined 

axial load and flexure). Stated alternately, the precise shape of the beam-column strength 

envelope depends on the specific member parameters that influence the resistance in the various 

axial and flexural modes of failure as well as the different interactions between these various 

failure modes. Further research is needed to determine how to best characterize these resistances. 

In the absence of further refinements, of the simple use of Eqs. (5.6.2-1) is recommended for 

general cases that go beyond the applicability of Eq. (4).  

 

AISC (2010) Section H1 gives the following modification of the moment gradient modifier Cb 

for doubly-symmetric members subjected to axial tension: 
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* 1 /b b u eyC C P P   (5.6.3-10) 

 

This modified Cb factor, with the tension force Pu taken as a positive number, accounts for the 

beneficial influence of axial tension on the lateral-torsional buckling resistance and is to be 

applied with Eqs. (5.6.2-1). Equation (10) can be inferred from a version of Eq. (5) with the 

second term on the right-hand side taken equal to 1.0. Its application in the context of Eqs. 

(5.6.2-1) is ad hoc, but gives a reasonable estimate of the bulge within the lower quadrants of the 

strength envelope for these types of members.  
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Figure 91  Beam-column resistances under tensile and compressive axial force (tension is 

shown as negative) and uniform primary bending  (W16x57, Fy = 50 ksi, Lb = 18.3 ft, Cb = 

1.0). 

 

Figure 91 illustrates the combined influence of Eqs. (4) and (10) for a simply-supported wide-

flange beam-column subjected to uniform bending. The example W16x57 member has an 

unbraced length Lb = KLx = KLy = KLz =  18.3 ft, which is equal to  Lr.  Therefore, Mn = Me(Cb=1) 

= 269 ft-kips is governed by elastic LTB at Fe.LTB = Fyr. (see Eqs. (5.3.5-24) and ((5.3.5-17)). 

Also, the out-of-plane compressive resistance Pn is governed by elastic flexural buckling at Pny =  

0.877Pey = 255 kips, and Pez = 850 kips = 3.33Pny for this member. The resistance for pure axial 

tension with zero applied bending moment is taken as Py = 835 kips, the in-plane axial 

compressive resistance is Pnx = 777 kips, and the in-plane flexural resistance is Mp = 438 ft-kips. 

 

Three important sets of curves are shown in Figure 91: 
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The in-plane member strength determined using Eqs. (5.6.2-1) with the resistances Pnx, Mp and 

Py, denoted by the outer-most bold strength curves,  

 

The out-of-plane strength determined using Eqs. (5.6.2-1) with the resistances Pny and Mn(Cb=1) 

for the case of axial compression, and, for the case of axial tension, determined using Eqs. (5.6.2-

with the resistances Py and Mn(Cb=1), but with Mn(Cb=1) increased by Cb from Eq. (10) and capped 

by Cb Mn(Cb=1) < Mp. This strength is shown by the dotted curves.  

 

The “enhanced” “rigorous” out-of-plane strength determined using Eq. (4) with the resistances 

Pny and Mn(Cb=1) for the case of axial compression (with f and c taken equal to 1.0), and, for the 

case of axial tension, determined using Eq. (5) with the resistance Pey replaced Pny in the terms 

on the right-hand side of the equation, and Me
2
 = Me(Cb=1)

2
 = Mnx(Cb=1)

2
 in the denominator on the 

left-hand side of the equation. This strength is shown by the dashed curves.  

 

For the third set of curves, Eq. (4) is only slightly more conservative compared to Eq. (5) for the 

case of axial compression, since Pez/Pny = 3.33 for the subject member whereas Eq. (4) uses the 

lower-bound value of Pez/Pny = 2.0.  However, Eq. (5) is used for the axial tension case for this 

set of strength curves because Eq. (4) is slightly liberal relative to the exact analytical out-of-

plane strength equation for tensile axial force.  

 

One can observe that Eqs. (4) and (5) give a more liberal assessment of the out-of-plane strength, 

relative to the second set of curves, for the cases with high axial compression, although the 

increase in the strength for this uniform bending problem is relatively small for axial 

compression case. Conversely, for I-section members with column-type sections (i.e., bf   d) 

subjected to moment-gradient loading, the benefits can be substantial. In fact, when these types 

of members are subjected to double-curvature, the out-of-plane resistance typically does not 

govern the strength. The most effective application of Eq. (4) is for this situation.  In these cases, 

the most streamlined approach for member proportioning is to design the member assuming the 

out-of-plane strength does not govern, then check the resulting design using Eq. (4).   

 

The Cb given by Eq. (10) captures some enhancement in the flexural resistance due to concurrent 

axial tension, as evidenced by the dotted curve, but not as substantial as the result from Eq. (5). 

However, the more liberal strength provided by Eq. (5) for the axial tension case is not specified 

in AISC (2010).  One can observe that the dotted curve asymptotes to the in-plane axial tension 

strength in the first set of curves at approximately 400 kips axial tension.  Equation (5) is more 

abruptly “capped” by the in-plane axial tension resistance at an axial tension slightly larger than 

0.2Py, the axial tension force corresponding to the knee of the bilinear interaction curve.   

 

5.6.3.3 Other types of beam-columns, general loading conditions 

 

The above sections focus on the in-plane resistance of various types of beam-columns loaded 

about either their major or minor principal axis of bending, as well as the out-of-plane resistance 

of doubly- or singly-symmetric open-section members subjected to bending within their plane of 

symmetry. These applications constitute the vast majority of beam-column design situations in 

bridge construction.  
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The out-of-plane resistance of closed-section beam-columns bent about their strong-axis and 

subjected to axial compression, e.g., a beam-column with a box cross-section, is represented 

accurately to conservatively by Eqs. (5.6.2-1) with Pn taken as the smaller of the member axial 

resistances for flexural buckling about the strong- or weak-axis. Equations (5.6.2-1) may be 

applied to the design of arch ribs, which often are rectangular box sections (e.g., see Wright and 

Bunner (2006)). In cases where a refined buckling analysis is utilized to evaluate the stability of 

the arch, Pn may be calculated using Eqs. (5.2.1-1) with Pe taken as the axial force at the 

governing buckling condition. Also, AASHTO (2014) requires the  use of a linear interaction 

equation rather than Eqs. (5.2.1-1) if the plate slenderness limits are relaxed by using applied 

stresses fa, fa + fb/3 and fa + fb instead of Fy in Eqs. (5.2.4-17) through (5.2.4-20). 

 

In some cases, bridge members are subjected to biaxial bending in combination with axial 

tension or axial compression. In these cases, extensive research shows that Eqs. (5.6.2-1) 

generally provide an accurate to somewhat conservative representation of the true strength 

envelope for compact I- and box-section members (Galambos 1998). The true shape of the 

strength envelope between the major- and minor-axis bending moments can be highly conve 

AISC (1999) Appendix H provides nonlinear interaction equations for compact I- and box-

section members in braced frames that provide the best known estimate of the true resistances. 

These equations no longer appear in AISC (2010), apparently due to their infrequent usage in 

design practice. In addition, AISC (2010) Section H3 provides a strength interaction equation for 

combined torsion, shear, flexure and axial force in HSS members, including members in which 

the resistances can be influenced by local buckling. This equation indicates only a linear 

interaction between the flexural and axial capacity ratios. The author is not aware of any 

nonlinear beam-column interaction equations for axial loading and biaxial bending on open-

section members with singly-symmetric cross-sections and/or noncompact or slender cross-

section elements.  

 

5.6.4  Composite Members 

 

This section addresses the axial force-moment interaction for steel-concrete composite members. 

Two main types of members are considered: (A) I- and box-section members with a composite 

concrete deck, and (B) Concrete-encased sections and concrete-filled boxes and tubes. 

 

5.6.4.1  I- and box-section members with a composite concrete deck 

 

I-section members with a composite concrete deck behave in a fashion somewhat like the singly-

symmetric steel I-sections with a large top flange discussed in Section 5.6.3 of this module. The 

flexural resistance in positive bending is based on the plastic section response or flange yielding 

depending on whether the section is classified as compact or noncompact (see Section 5.3.3 and 

5.3.4). The member resistance in axial compression is based either on flexural buckling about the 

major axis of bending or on torsional buckling about an enforced axis of rotation located at the 

depth of the shear connectors (see Section 5.2.7). The member resistance in combined axial 

compression and positive bending may be obtained conservatively by applying Eqs. (5.6.2-1). 

However, a more liberal estimate may be obtained potentially by estimating the bulge in the 

strength envelope for loading within the upper-right quadrant. The appropriate calculations for 

this estimate are not readily apparent if the cross-section is noncompact in positive bending, 
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and/or if the I-section web is slender in uniform axial compression. The behavior of box-section 

members with a composite concrete deck is similar, except that, as noted previously in Section 

5.6.3, torsional buckling of the steel section is not a consideration.  

 

5.6.4.2  Concrete-encased sections and concrete-filled boxes and tubes 

 

The AISC (2010) commentary provides guidelines for calculation of the resistance for encased 

composite columns and concrete infilled sections subjected to combined axial compression and 

bending moment. Three separate approaches may be utilized that vary in their level of 

conservatism and amount of calculation effort. All of the methods take advantage of the strength 

determination for a limited number of loading cases, and utilize interpolation or interaction 

equations to calculate the strengths for other cases.  

 

The first approach is essentially the same as in AISC (1999). If the axial and flexural resistances 

are calculated using the AASHTO (2014) - AISC (1999) provisions, the beam-column strength 

assessment must be conducted using this method. In addition, the design of noncompact or 

slender concrete-filled sections is limited to this method (AISC 2010). This approach applies 

only to doubly-symmetric composite beam-columns. For these types of members, Eqs. (5.6.2-1) 

provide a conservative estimate of the member resistance for combined axial compression and 

flexure, given the axial resistance Pn calculated as discussed in Section 5.2.7 of this module and 

the flexural resistance calculated as outlined in Section 5.5.9(B). Also, this approach may be 

used for combined tension and flexure. The degree of conservatism depends on the extent of the 

concrete contribution to the strength, relative to that of the steel. Equations (5.6.2-1) are 

generally more conservative for members with a larger contribution from the concrete.  

 

The second approach starts with a plastic analysis to determine the cross-section strength under 

combined bending and axial force. This approach is illustrated by considering the strength 

behavior for an encased I-section bent about its major axis and having only four bars as 

longitudinal reinforcement (see Figure 92). The “exact” cross-sectional strength interaction 

curve, shown by the bold solid curve in Figure 93, is obtained by a strain-compatibility analysis. 

The flexural strength, M, and axial load, P, may be estimated for various points along this curve 

by assuming a position of the plastic neutral axis, PNA, drawing the corresponding fully-plastic 

stress distributions, and summing their moments about the cross-section reference axis. The 

concrete under tension is neglected. Strain continuity is assumed between the steel and the 

concrete portions of the cross-section. This assumption, although not supported by much of the 

data from experimental tests where the interface was monitored, has a negligible influence on the 

ultimate strength and a minor influence on the stiffness of the cross-section (Galambos 1998). 
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Figure 92  Stress distributions corresponding to key points on the beam-column strength 

envelope. 

 

Rather than determine a continuous locus of points to define the cross-section plastic strength 

curve, it is sufficient to define the cross-section strength by locating the five points shown in 

Figure 93 (Roik and Bergmann 1992; Ziemian 2010; AISC 2010). The strengths are determined 

by linear interpolation for cases that fall between these points. Point A is the strength under 

concentric axial compression, determined as the value Po in Section 5.2.7 of this module. Point B 

is the plastic cross-section flexural resistance for zero axial force. Point C corresponds to a PNA 

location that gives the same flexural capacity as point B but with a nonzero axial compression. 

Assuming that the PNA lies in the web of the steel I-section for Points B and C, and that it is 

located at a distance hn above the mid-depth of the I-section for Point B, the corresponding PNA 

for Point C is located at the same distance hn below the mid-depth of the I-section. In both of the 

stress distributions for Points B and C, the depth 2hn is in the middle of the section and hence the 

stress block or blocks within this depth contribute no moment about the mid-depth reference axis 

of the cross-section. In addition, it should be recognized from Figure 92 that the axial forces 

from the reinforcement and the shaded portions of the stress blocks from the steel shape cancel 

out.  
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Figure 93  Strength envelope for encased or filled composite beam-column. 

 

If one adds the stress distributions in Figure 92b and Figure 92c, the resulting axial force from 

the sum of these distributions is still the axial force PC corresponding to the stress blocks in 

Figure 92c. This is because the total axial force in Figure 92b is zero. Furthermore, one can 

observe by summing the contributions from the distributions in Figure 92b and Figure 92c that 

the corresponding total axial force is equal to that given by the concrete section alone, i.e. 

 

0.85 ( )C c c c s srP f B H A A     (5.6.4-1) 

 

where Bc and Hc are the dimensions of the concrete section shown in Figure 92a, As is the area of 

the steel section, and Asr is the area of reinforcing steel.  

 

In a similar fashion, if the stress distribution in Figure 92b is subtracted from that of Figure 92c 

and the contribution of this sum to the axial force is considered, which is still equal to PC, one 

obtains 

 

( )(2 )(0.85 ) 2 (2 )C c w n c w n yP B t h f t h F    (5.6.4-2) 

 

This equation may be solved for hn to obtain 

 

2(0.85 (2 0.85 )

C
n

c c w y c

P
h

B f t F f


  
  (5.6.4-3) 

 

Once hn is determined, the moment capacity corresponding to points B and C is easily calculated.  

 

The moment corresponding to the balance point (point D), where the moment capacity is largest, 

is obtained when the PNA is located at the mid-depth of the cross-section (since in this case, all 

the stress blocks contribute to the moment about the mid-depth reference axis). From Figure 92d, 
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one can observe that all the contributions to the axial load from the steel shape and the 

reinforcement cancel out, and that the axial load PD corresponds to 0.85 c
f   acting over half of the 

cross-section, i.e., PD = PC/2. 

 

Point E is an arbitrary point selected to improve the approximation of the “exact” cross-section 

strength curve between points A and C.  

 

Given the above approximate cross-section plastic strength envelope and the column design axial 

strength cPn, determined as discussed in Section 5.2.7 of this module (accounting for the 

column length effects), an appropriate design strength envelope may be determined by scaling 

the abscissa and ordinate of points A through E by the factor 

 

2c n
f f
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P

 
 
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 
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 (5.6.4-4a) 

 

where  

 

1tan i

i

P

M
   
  

 
 (5.6.4-4b) 

 

is the angle (in radians) that a radial line from the origin to the point (Mi, Pi), i = A, B, C, D or E. 

The commentary of AISC (2010) indicates that “…care should be taken in reducing Point D by a 

resistance factor or to account for member slenderness, as that may lead to an unsafe situation 

whereby additional flexural strength is permitted at a lower axial compressive strength than 

predicted by the cross-section strength of the member.” Equations (4) avoid this anomaly by 

shifting the cross-section strength along a radial line toward the origin by a factor that varies 

from f for point B to cPn/Po for point A. 

 

The third approach is a simplification of the above procedure. In this approach, points A (0, PA), 

C (MC, PC), Ad (0, cPn) and Bd (f Mn, 0) are determined as described above. The axial force and 

moment coordinates of point C are then shifted by cPn/PA and f respectively to obtain point Cd. 

Finally, the strength envelope for the beam-column is expressed conservatively by linear 

interpolation between points Ad, Cd and Bd.  

 

The first of the above approaches directly accommodates compression and biaxial bending, since 

Eqs. (5.6.2-1) accommodate bending about both the major and minor principal axes of the cross-

section. Roik and Bergmann (1992) recommend the use of linear interpolation between the 

strength envelopes for axial compression and bending about each of the cross-section principal 

axes. This approximation may be applied in either of the above second or third methods. The 

axial compressive resistance cPn is taken as the smaller resistance for column flexural buckling 

about either of the cross-section principal axes in determining the point Ad for each of the 

uniaxial strength envelopes. The corresponding maximum second-order elastic moments along 

the member length are substituted into the strength interaction equation for bending about each 

of the principal axes (as discussed previously in the context of Eqs. (5.6.2-1), this is necessary 

because the interaction equations provide a simplified check of the combined influence of 
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strength and stability for the complete unbraced length of the member, not just a check of the 

resistance at a given cross-section).  

 

5.6.5 Summary Assessment of Beam-Column Strength Calculations 

 

It should be clear from the above discussions that the various design strength interaction 

equations are only coarse, albeit accurate to conservative, approximations of the true limit states 

response of general beam-column members. The nominal axial resistance Pn alone is governed in 

general by many different limit states. For axial compression, these limit states include flexural 

buckling about the x- or y-axis of the cross-section based on the effective lengths KLx and KLy, 

torsional buckling about the member centroidal axis (for doubly-symmetric open-section 

members) or about an axis at which the transverse displacements are constrained based on the 

effective length KLz, or torsional-flexural buckling based on the effective lengths KLy and KLz, 

depending on the specifics of the member geometry and boundary conditions. For most practical 

member lengths, the member response involves significant inelasticity and corresponding 

reductions in stiffness prior to achieving these strength limit states. However, for longer 

members, the limit states response may be dominated by the elastic stability behavior. If the 

member cross-section contains slender elements under uniform axial compression, the column 

limit states response is influenced by the local buckling and post-buckling behavior of the 

component plates. For axial tension, the limit states include overall tension yielding, or tension 

fracture at a net section including shear lag effects associated with the connection geometry.  

 

The nominal flexural resistance of noncomposite members and composite members with a 

composite concrete deck is governed by various idealizations of member elastic or inelastic 

lateral-torsional buckling, elastic or inelastic local buckling and postbuckling of the component 

plates, and potential extents of yielding through the cross-section depth, depending on the cross-

section type. For encased composite members, the flexural resistance is based on different 

extents of yielding, depending on whether shear connectors are provided and whether the 

concrete meets limits on its maximum compressive strength in AISC (2010), and depending on 

the level of axial compression in AASHTO (2014) and AISC (1999).  

 

The physical interaction between the various axial and flexural resistances, and the resulting 

shape of the physical strength envelopes, differs in general depending on the specific 

combinations of the above limit states. It can be argued explicit application of carefully validated 

numerical procedures that account for all the significant influences on the maximum strength 

provides the only practical means of gaining any substantial improvement in accuracy relative to 

the practical design interaction equations that have been discussed. Appendix 1 of the AISC 

(2010) Specification provides guidelines for the application of this type of approach.  However, 

in many practical situations, the simple Specification strength interaction equations are sufficient 

to achieve an economical design.  
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6.0 CONCLUDING REMARKS 

 

As stated in the introduction, this module aims to aid the Engineer in reviewing and 

understanding the essential principles of steel system and member strength behavior and design 

behind various Specification provisions for the design of steel bridge structures. That is, it is 

intended as a relatively comprehensive resource that engineers can consult to understand the 

background to the various Specification provisions so that the provisions can be properly applied 

for “standard” designs, and so the design considerations can be most appropriately be extended 

to the many “non-standard” situations that arise in bridge design practice.  It should also be clear 

from the various discussions that there are always areas of potential further improvement.  

Nevertheless, the AASHTO (2014) and AISC (2010) Specifications represent a tremendous 

resource for the efficient, practical and economical design of steel bridge structures. 
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